E. Arithmetic Progression
题意
现在有一个长度为n的打乱的等差数列,你只知道长度,并且可以提出60个问题,让你确定这个等差序列的首项和公差。问题的格式分为两种:
1:询问等差序列中是否有大于x的数
2:询问等差序列中第i个数是什么
1
≤
a
i
≤
1
0
9
1 \leq a_i \leq 10^9
1≤ai≤109
做法
看到这个60,我们肯定知道要想log的算法,由于每个数都小于 1 0 9 10^9 109,我们只需要30次就可以算出这个序列的末项是什么。之后的30次提问,我们只需要随机的获取30次下标的值,之后排序取两两相邻差的gcd即可。这个正确性的证明可以看官方题解, 错 误 率 < 1 0 − 9 错误率<10^{-9} 错误率<10−9
代码
#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<time.h>
using namespace std;
bool ask(int mid)
{
printf("> %d\n",mid);
fflush(stdout);
int x;
scanf("%d",&x);
return x;
}
std::mt19937 rnd(time(0));
int gcd_(int a, int b)
{
return b ==0? a : gcd_(b, a % b);
}
int main()
{
int n;
scanf("%d",&n);
int l=0,r=1000000000,mid;
while(l<=r)
{
mid=(l+r)/2;
if(ask(mid)) l=mid+1;
else r=mid-1;
}
vector<int> v;
for(int i=1;i<=30;i++)
{
int tmp=(rnd()%n)+1;
printf("? %d\n",tmp);
fflush(stdout);
int x;
scanf("%d",&x);
v.push_back(x);
}
sort(v.begin(),v.end());
int gcd=0;
for(int i=1;i<v.size();i++)
{
gcd=gcd_(gcd,v[i]-v[i-1]);
}
printf("! %d %d\n",r+1-gcd*(n-1),gcd);
fflush(stdout);
return 0;
}