【Codeforces Round #538 (Div. 2) E. Arithmetic Progression】二分+随机化+交互

19 篇文章 0 订阅
6 篇文章 0 订阅

E. Arithmetic Progression

题意

现在有一个长度为n的打乱的等差数列,你只知道长度,并且可以提出60个问题,让你确定这个等差序列的首项和公差。问题的格式分为两种:

1:询问等差序列中是否有大于x的数
2:询问等差序列中第i个数是什么

1 ≤ a i ≤ 1 0 9 1 \leq a_i \leq 10^9 1ai109
做法

看到这个60,我们肯定知道要想log的算法,由于每个数都小于 1 0 9 10^9 109,我们只需要30次就可以算出这个序列的末项是什么。之后的30次提问,我们只需要随机的获取30次下标的值,之后排序取两两相邻差的gcd即可。这个正确性的证明可以看官方题解, 错 误 率 &lt; 1 0 − 9 错误率&lt;10^{-9} <109

代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
#include<time.h>
using namespace std;
bool ask(int mid)
{
    printf("> %d\n",mid);
    fflush(stdout);
    int x;
    scanf("%d",&x);
    return x;
}
std::mt19937 rnd(time(0));
int gcd_(int a, int b)
{
     return b ==0? a : gcd_(b, a % b);
}
int main()
{
    int n;
    scanf("%d",&n);
    int l=0,r=1000000000,mid;
    while(l<=r)
    {
        mid=(l+r)/2;
        if(ask(mid)) l=mid+1;
        else r=mid-1;
    }
    vector<int> v;
    for(int i=1;i<=30;i++)
    {
        int tmp=(rnd()%n)+1;
        printf("? %d\n",tmp);
        fflush(stdout);
        int x;
        scanf("%d",&x);
        v.push_back(x);
    }
    sort(v.begin(),v.end());
    int gcd=0;
    for(int i=1;i<v.size();i++)
    {
        gcd=gcd_(gcd,v[i]-v[i-1]);
    }
    printf("! %d %d\n",r+1-gcd*(n-1),gcd);
    fflush(stdout);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值