链接
Codeforces Round #551 (Div. 2) D.Serval and Rooted Tree
题意
给你一棵树,每个点上有一个flag
,如果flag=0
,表示这个点的权值是所有子节点权值中的最小值。如果flag=1
,表示这个点的权值是所有子节点权值中的最大值。如果一共有k
个叶子节点,我们可以给每一个叶子节点安排一个1-k
中的权值,但是每个权值只能使用一次,现在想知道根节点权值的最大值。
做法
这道题直接考虑权值大小根本不能处理,因为权值都是不固定的,于是我们考虑怎么能让我们知道答案呢,我们让dp[i]
表示以i为根的子树中,i的权值在这个子树的所有叶节点中最小排名,这样更新的时候,如果flag=1
,我们肯定是选择一个最小的排名更新当前节点,如果flag=0
,我们肯定要把所有子节点的最小排名加起来,就是我们当前节点的最小排名,向上传递直到知道根节点的最小排名,这道题就结束了!
代码
#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 3e5+5;
int dp[maxn];
int flag[maxn];
vector<int> G[maxn];
void dfs(int rt)
{
int minn=0,maxx=INF;
for(int i=0;i<G[rt].size();i++)
{
int to=G[rt][i];
dfs(to);
maxx=min(maxx,dp[to]);
minn+=dp[to];
}
if(G[rt].size()==0) dp[rt]=1;
else
{
if(flag[rt]==0) dp[rt]=minn;
else dp[rt]=maxx;
}
return ;
}
int main()
{
int n,x;
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&flag[i]);
for(int i=2;i<=n;i++)
{
scanf("%d",&x);
G[x].push_back(i);
}
int sum=0;
for(int i=1;i<=n;i++) sum+=(G[i].size()==0);
dfs(1);
printf("%d\n",sum-dp[1]+1);
return 0;
}