【Codeforces Round #551 (Div. 2) D.Serval and Rooted Tree】树形DP

47 篇文章 0 订阅
7 篇文章 0 订阅
本文解析了Codeforces Round #551 (Div.2) D题:Servaland Rooted Tree。介绍了如何通过动态规划计算树中每个节点的权值最小排名,最终确定根节点权值的最大可能值。
摘要由CSDN通过智能技术生成

链接

Codeforces Round #551 (Div. 2) D.Serval and Rooted Tree

题意

给你一棵树,每个点上有一个flag,如果flag=0,表示这个点的权值是所有子节点权值中的最小值。如果flag=1,表示这个点的权值是所有子节点权值中的最大值。如果一共有k个叶子节点,我们可以给每一个叶子节点安排一个1-k中的权值,但是每个权值只能使用一次,现在想知道根节点权值的最大值。

做法

这道题直接考虑权值大小根本不能处理,因为权值都是不固定的,于是我们考虑怎么能让我们知道答案呢,我们让dp[i]表示以i为根的子树中,i的权值在这个子树的所有叶节点中最小排名,这样更新的时候,如果flag=1,我们肯定是选择一个最小的排名更新当前节点,如果flag=0,我们肯定要把所有子节点的最小排名加起来,就是我们当前节点的最小排名,向上传递直到知道根节点的最小排名,这道题就结束了!

代码

#include<stdio.h>
#include<iostream>
#include<algorithm>
using namespace std;
const int INF = 0x3f3f3f3f;
const int maxn = 3e5+5;
int dp[maxn];
int flag[maxn];
vector<int> G[maxn];
void dfs(int rt)
{
    int minn=0,maxx=INF;
    for(int i=0;i<G[rt].size();i++)
    {
        int to=G[rt][i];
        dfs(to);
        maxx=min(maxx,dp[to]);
        minn+=dp[to];
    }
    if(G[rt].size()==0) dp[rt]=1;
    else
    {
        if(flag[rt]==0) dp[rt]=minn;
        else dp[rt]=maxx;
    }
    return ;
}
int main()
{
    int n,x;
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%d",&flag[i]);
    for(int i=2;i<=n;i++)
    {
        scanf("%d",&x);
        G[x].push_back(i);
    }
    int sum=0;
    for(int i=1;i<=n;i++) sum+=(G[i].size()==0);
    dfs(1);
    printf("%d\n",sum-dp[1]+1);
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值