- 博客(6)
- 收藏
- 关注
原创 Overleaf可以TexStudio却无法编译出参考文献解决方法
从转到使用Latex本地编辑工具texstudio编辑论文,参考文献使用的是mycite.bib格式进行引用。原本在overleaf中是正常的引用,但是在新增参考文献之后重新编译新增加的参考文献会出现问号[?]的情况,网上有不少方法编辑器转来转去,但是写的混乱而且还有一些注意的细节没提到,在这里我讲诉下我的解决办法,供大家参考。
2025-03-29 18:41:47
720
原创 数据结构系列
对于单链表结构,假设需要获取第 i 个元素,则必须从第一个结点开始依次进行遍历,直到达到第 i 个结点。因此,对于单链表结构而言,其数据元素读取的。而对单链表结构来说,对其任意一个位置进行增删操作,其。每个数据元素,不管它是整型,实型还是字符型,它。线性表的顺序存储结构,对于。占用一定的存储单元空间的。因为插入或删除后,需要。,对头指针的增删操作其。
2024-07-20 18:02:31
309
原创 vit系列(vit / Deit / Levit / Localvit / Cait / Pvt / T2T-vit / swin-transfomer)
这种深度卷积可以精确地提供局部信息聚合的机制,而这在视觉变换器的前馈网络中是缺失的。对于普通开发者,要想利用ViT获得理想的泛化能力,需要庞大的计算资源和数以亿计的图像进行预训练,成本昂贵,而Facebook的DeiT模型(8600万参数)蒸馏出的学生模型在准确率和吞吐量之间的权衡胜过其教师网络,有趣的是,卷积网络作为教师网络的结果要比用Transformer作为教师网络的结果更佳。上表是论文用来对比ViT,Resnet(和刚刚讲的一样,使用的卷积层和Norm层都进行了修改)以及Hybrid模型的效果。
2024-04-18 18:55:16
3553
1
原创 半监督学习中的问题集合
最小化熵和一致性正则化是半监督学习中的两个重要概念,它们在约束模型学习和推广性能方面具有不同的目标和作用。最小化熵主要关注的是未标记数据的预测结果。在许多半监督学习方法中,一个基本假设是分类器的决策边界不应该通过边缘数据分布的高密度区域,因此,要求分类器对未标记的数据输出低熵预测。这可以通过简单地添加一个损失项来实现,该损失项会使得Pmodel(y | x;θ)未标注数据。
2024-04-18 11:23:25
780
1
原创 图像通道格式以及GPU.CPU(Tensor)与numpy、PLT互换
而NHWC,每读取三个像素,都能获得一个彩色像素的值,即可对该彩色像素进行计算,这更适合多核CPU运算,CPU的内存带宽相对较小,每个像素计算的时延较低,临时空间也很小;:在训练模型时,使用GPU,适合NCHW格式;在CPU中做推理时,适合NHWC格式。采用什么格式排列,由计算硬件的特点决定。由于NCHW,需要把所有通道的数据都读取到,才能运算,所以在计算时需要的存储更多。TensorFlow:默认使用NHWC,GPU也支持NCHW。的特点,其访存与计算的控制逻辑相对简单;,计算控制会比较复杂,这也比。
2023-09-05 15:19:37
583
1
原创 os与sys模块的区别
os模块与sys模块都是python中的常用模块,os模块负责python和操作系统交互,sys模块负责查询python解释器的环境信息。os.path.split('path') # 返回( dirname(), basename())元组。os.path.splitext() # 返回 (filename, extension) 元组。print(sys.modules.keys()) # 返回所有已经导入的模块列表。sys.exit() # 结程序,和python的内置函数exit()作用一样。
2023-09-05 13:52:17
249
1
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人