深度学习分类常见评价指标:accuracy recall precision specificity sensitivity AUC ROC 曲线
深度学习分类时常用到以下指标,这里做一个总结:首先介绍一些指标的定义:(1)若一个实例是正类,但是被预测成为正类,即为真正类(True Postive TP)(2)若一个实例是负类,但是被预测成为负类,即为真负类(True Negative TN)(3)若一个实例是负类,但是被预测成为正类,即为假正类(False Postive FP)(4)若一个实例是正类,但是被预测成为负类,即为假负类(False Negative FN)这四个部分可以构成一个混淆矩阵: ...
原创
2020-05-22 12:00:49 ·
4180 阅读 ·
0 评论