shap可解释工具的理解及应用以及图片保存
1.shap可解释工具的理解
2. shap可解释工具的应用
3. shap图片保存
-
shap.force_plot()单个可解释性的图片保存()
shap.force_plot(explainer.expected_value, shap_values[0], X.iloc[0,:],show=False, matplotlib=True)
plt.savefig(‘path’,bbox_inches=‘tight’) # bbox_inches=‘tight’ 使保存的图像更完整,包含坐标信息。 -
shap.force_plot()多个样本可解释性的保存
xx = shap.force_plot(explainer.expected_value, shap_values[0], X.iloc[0,:]
shap.save_html(‘xx.html’, xx) -
特征重要性图和特征分布图
shap.summary_plot(explainer.expected_value, shap_values[0], X.iloc[0,:],show=False )(plot_type=‘bar‘ 代表特征重要性图 ‘dot’代表特征点分布图)
plt.savefig(‘path’) -
特征交互图
shap.dependence_plot(‘DAYS_CREDIT’, shap_values[1], data_model[use_cols], display_features=data[use_cols],interaction_index=None,show = false)
plt.savefig(‘path’)