机器学习
机器学习
王小波_Libo
这个作者很懒,什么都没留下…
展开
-
机器学习SVM使用
from sklearn import svm x = [[1, 1], [2, 0], [2, 3]] y = [0, 0, 1] # 分类标记 clf = svm.SVC(kernel='linear') # SVM模块,svc,线性核函数 clf.fit(x, y) print(clf) print(clf.support_vectors_) # 支持向量点 # print(c...原创 2018-10-28 10:14:07 · 330 阅读 · 0 评论 -
SVM线性可分
from sklearn import svm x = [[1, 1], [2, 0], [2, 3]] y = [0, 0, 1] # 分类标记 clf = svm.SVC(kernel='linear') # SVM模块,svc,线性核函数 clf.fit(x, y) print(clf) print(clf.support_vectors_) # 支持向量点 # print(cl...原创 2018-04-20 16:55:04 · 281 阅读 · 0 评论 -
机器学习十大算法之决策树(详细)
什么是决策树? 如何构建决策树? ID3 C4.5 CART 决策树的优缺点及改进 什么是决策树? 决策树是运用于分类的一种树结构,其本质是一颗由多个判断节点组成的树,其中的每个内部节点代表对某一属性的一次测试,每条边代表一个测试结果,而叶节点代表某个类或类的分布。 属于有监督学习 核心思想: 分类决策树的核心思想就是在一个数据集中找到一个最优特征,根据这个最优特征将数据集分为两个子数据集,...原创 2018-10-12 21:06:12 · 1603 阅读 · 0 评论 -
使用lightgbm实现充电桩分类
import lightgbm as lgb import pandas as pd import numpy as np from sklearn.model_selection import train_test_split # 导入数据 col_names = ["ID","K1K2驱动信号","电子锁驱动信号","急停信号","门禁信号","THDV-M","THDI原创 2018-10-28 10:27:58 · 674 阅读 · 0 评论 -
决策树
from math import log def createDataSet(): dataSet = [[0, 0, 0, 0, 'no'], #数据集 [0, 0, 0, 1, 'no'], [0, 1, 0, 1, 'yes'], [0, 1, 1, 0, 'yes'], ...原创 2019-01-29 10:55:01 · 241 阅读 · 0 评论