【图论】Laplacian matrix

本文深入探讨了图论中拉普拉斯矩阵的概念,包括其定义、类型如对称归一化和随机游走归一化,以及在无向图中的性质。通过实例展示了矩阵的构造过程,解释了拉普拉斯矩阵与关联矩阵的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文阅读

Laplacian matrix

Laplacian matrix是图论数学领域的一个概念,又名graph Laplacian, admittance matrix, Kirchhoff matrixdiscrete Laplacian,是一个图的矩阵表示。

Definition

Laplacian matrix for simple graphs

给定一个有 n n n个节点的简单图 G G G,它的Laplacian矩阵 L n × n \bf{L}_{n\times n} Ln×n可以定义为
L = D − A , {\bf L} = {\bf D} - {\bf A}, L=DA,
其中, D \bf{D} D是一个degree矩阵, A \bf{A} A是一个adjacency矩阵。对于simple图, A \bf{A} A是一个对角线上元素为0的二值矩阵。

对于directed图,indegree或outdegree都可能用到,完全取决于应用。

L \bf{L} L元素为
L i , j : = { deg ⁡ ( v i )     if  i = j − 1     if  i ≠ j  and  v i ∼ v j 0     otherwise , {\bf L}_{i,j} := \left \{ \begin{aligned}\deg(v_i) ~~~ & \text{if} ~ i = j\\-1 ~~~ & \text{if} ~ i \neq j ~\text{and}~ v_i \sim v_j \\0 ~~~ & \text{otherwise}\end{aligned}\right., Li,j:=deg(vi)   1   0   if i=jif i=j and vivjotherwise,
其中, ∼ \sim 表示 v i v_i vi v j v_j vj邻接。

Symmetric normalized Laplacian

对称归一化Laplacian矩阵被定义为
L sys : = D − 1 2 L D − 1 2 = I − D − 1 2 A D − 1 2 . {\bf L}^{\text{sys}} := {\bf D}^{-\frac{1}{2}} {\bf L} {\bf D}^{-\frac{1}{2}} = {\bf I} - {\bf D}^{-\frac{1}{2}} {\bf A} {\bf D}^{-\frac{1}{2}}. Lsys:=D21LD21=ID21AD21.
L sys {\bf L}^{\text{sys}} Lsys元素为
L i , j sys : = { 1     if  i = j  and deg ⁡ ( v i ) ≠ 0 − 1 deg ⁡ ( v i ) deg ⁡ ( v j )     if  i ≠ j  and  v i ∼ v j 0     otherwise . {\bf L}_{i,j}^{\text{sys}} := \left \{ \begin{aligned}1 ~~~ & \text{if} ~ i = j ~ \text{and} \deg(v_i) \neq 0\\-\frac{1}{\sqrt{\deg(v_i) \deg(v_j)}} ~~~ & \text{if} ~ i \neq j ~\text{and}~ v_i \sim v_j \\0 ~~~ & \text{otherwise}\end{aligned}\right.. Li,jsys:=1   deg(vi)deg(vj) 1   0   if i=j anddeg(vi)=0if i=j and vivjotherwise.

Random walk normalized Laplacian

随机游走归一化Laplacian矩阵定义为
L rw : = D − 1 L = I − D − 1 A . {\bf L}^{\text{rw}} := {\bf D}^{-1} {\bf L} = {\bf I} - {\bf D}^{-1} {\bf A}. Lrw:=D1L=ID1A.
r w sys {\bf rw}^{\text{sys}} rwsys元素为
L i , j rw : = { 1     if  i = j  and deg ⁡ ( v i ) ≠ 0 − 1 deg ⁡ ( v i )     if  i ≠ j  and  v i ∼ v j 0     otherwise . {\bf L}_{i,j}^{\text{rw}} := \left \{ \begin{aligned}1 ~~~ & \text{if} ~ i = j ~ \text{and} \deg(v_i) \neq 0\\-\frac{1}{\sqrt{\deg(v_i)}} ~~~ & \text{if} ~ i \neq j ~\text{and}~ v_i \sim v_j \\0 ~~~ & \text{otherwise}\end{aligned}\right.. Li,jrw:=1   deg(vi) 1   0   if i=j anddeg(vi)=0if i=j and vivjotherwise.

Generalized Laplacian

广义Laplacian被定义为
Q i , j rw : = { < 0     if  i = j  and deg ⁡ ( v i ) ≠ 0 = 0     if  i ≠ j  and  v i ∼ v j any number    otherwise . {\bf Q}_{i,j}^{\text{rw}} := \left \{ \begin{aligned}< 0 ~~~ & \text{if} ~ i = j ~ \text{and} \deg(v_i) \neq 0\\= 0 ~~~ & \text{if} ~ i \neq j ~\text{and}~ v_i \sim v_j \\\text{any number} ~~~ & \text{otherwise}\end{aligned}\right.. Qi,jrw:=<0   =0   any number   if i=j anddeg(vi)=0if i=j and vivjotherwise.

Notice the ordinary Laplacian is a generalized Laplacian.

Example

Labelled graph

一个labelled graph

Degree matrix

( 2 0 0 0 0 0 0 3 0 0 0 0 0 0 2 0 0 0 0 0 0 3 0 0 0 0 0 0 3 0 0 0 0 0 0 1 ) \left (\begin{matrix}2 & 0 & 0 & 0 & 0 & 0\\0 & 3 & 0 & 0 & 0 & 0\\0 & 0 & 2 & 0 & 0 & 0\\0 & 0 & 0 & 3 & 0 & 0\\0 & 0 & 0 & 0 & 3 & 0\\0 & 0 & 0 & 0 & 0 & 1\\\end{matrix}\right ) 200000030000002000000300000030000001

Adjacency matrix

( 0 1 0 0 1 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 1 0 1 1 1 1 0 1 3 0 0 0 0 1 0 0 ) \left (\begin{matrix}0 & 1 & 0 & 0 & 1 & 0\\1 & 0 & 1 & 0 & 1 & 0\\0 & 1 & 0 & 1 & 0 & 0\\0 & 0 & 1 & 0 & 1 & 1\\1 & 1 & 0 & 1 & 3 & 0\\0 & 0 & 0 & 1 & 0 & 0\\\end{matrix}\right ) 010010101010010100001011110130000100

Laplacian matrix

( 2 − 1 0 0 − 1 0 − 1 3 − 1 0 − 1 0 0 − 1 2 − 1 0 0 0 0 − 1 3 − 1 − 1 − 1 − 1 0 − 1 3 0 0 0 0 − 1 0 1 ) \left (\begin{matrix}2 & -1 & 0 & 0 & -1 & 0\\-1 & 3 & -1 & 0 & -1 & 0\\0 & -1 & 2 & -1 & 0 & 0\\0 & 0 & -1 & 3 & -1 & -1\\-1 & -1 & 0 & -1 & 3 & 0\\0 & 0 & 0 & -1 & 0 & 1\\\end{matrix}\right ) 210010131010012100001311110130000101

Properties

对于无向图 G G G,其Laplacian矩阵为 L {\bf L} L L {\bf L} L特征值为 λ 0 ≤ λ 1 ≤ ⋯ λ n − 1 \lambda_0 \leq \lambda_1 \leq \cdots \lambda_{n - 1} λ0λ1λn1,则有:

  • L {\bf L} L是对称的;

  • L {\bf L} L是正定的( λ i ≥ 0 , ∀ i \lambda_i \geq 0, \forall i λi0,i);

  • ∑ i = 0 n − 1 L i , j = ∑ j = 0 n − 1 L i , j = 1 \sum_{i = 0}^{n - 1} {\bf L}_{i,j} = \sum_{j = 0}^{n - 1} {\bf L}_{i,j} = 1 i=0n1Li,j=j=0n1Li,j=1

  • λ 0 = 0 ,   v 0 = ( 1 , 1 , ⋯   , 1 ) \lambda_0 = 0,~ \pmb{v}_0 = (1, 1, \cdots, 1) λ0=0, vvv0=(1,1,,1)

  • Laplacian是 n n n维向量空间上的函数算子 f : V → R f:{ V}\rightarrow\mathbb{R} f:VR

    L f ( v i ) = ∑ v j ∼ v i w i , j ( f ( v i ) − f ( v j ) {\bf L} f(v_i) = \sum_{v_j \sim v_i} w_{i,j} (f(v_i) - f(v_j) Lf(vi)=vjviwi,j(f(vi)f(vj)

  • 二次型:

    f T L f ( v i ) = 1 2 ∑ e i , j w i , j ( f ( v i ) − f ( v j ) {f^T {\bf L} f}(v_i) = \frac{1}{2}\sum_{e_{i,j}} w_{i,j} (f(v_i) - f(v_j) fTLf(vi)=21ei,jwi,j(f(vi)f(vj)

  • ……

Incidence matrix

Incidence matrix刻画了两类对象之间的关系,在graph theory中有广泛的应用。

Undirected and directed graphs

对于图 G = ( V , E ) G=(V,E) G=(V,E) n n n个顶点, m m m条边($|V| \times |E| = m \times n $),有两种incidence矩阵:

  • Unoriented incidence matrix

    • 对于无向图

    B i , j : = { 1     v i − e j 0     otherwise . {\bf B}_{i,j} := \left \{ \begin{aligned} 1 ~~~ &v_i - e_j\\ 0 ~~~ &\text{otherwise} \end{aligned} \right. . Bi,j:={1   0   viejotherwise.

    • 对于有向图

    B i , j : = { 1     v i → e j 1     v i ← e j 0     otherwise . {\bf B}_{i,j} := \left \{ \begin{aligned} 1 ~~~ &v_i \rightarrow e_j\\ 1 ~~~ &v_i \leftarrow e_j\\ 0 ~~~ &\text{otherwise} \end{aligned} \right. . Bi,j:=1   1   0   viejviejotherwise.

  • Oriented incidence matrix

    • 对于无向图:无向图的有向关联矩阵是图的任何方向的关联矩阵。

    • 对于有向图

    B i , j : = { 1     v i → e j − 1     v i ← e j 0     otherwise . {\bf B}_{i,j} := \left \{ \begin{aligned} 1 ~~~ &v_i \rightarrow e_j\\ -1 ~~~ &v_i \leftarrow e_j\\ 0 ~~~ &\text{otherwise} \end{aligned} \right. . Bi,j:=1   1   0   viejviejotherwise.

Boundary operator

图的boundary operator定义为:
ϑ : E ( G ) → V ( G ) \vartheta:E(G) \rightarrow V(G) ϑ:E(G)V(G)
而图的co-boundary operator定义为:
π : V ( G ) → E ( G ) \pi:V(G) \rightarrow E(G) π:V(G)E(G)

Discrete differential operator

Incidence矩阵是离散的微分算子

  • f → B f f \rightarrow {\bf B} f fBf是一个co-boundary mapping;

  • 特别地, ( B f ) ( e i , j ) f ( v j ) − f ( v i ) ({\bf B} f) (e_{i,j})f(v_j) - f(v_i) (Bf)(ei,j)f(vj)f(vi)

  • Example:
    ( f ( 2 ) − f ( 1 ) f ( 1 ) − f ( 3 ) f ( 3 ) − f ( 2 ) f ( 4 ) − f ( 2 ) ) = ( − 1 1 0 0 1 0 − 1 0 0 − 1 1 0 0 − 1 0 1 ) ( f ( 1 ) f ( 2 ) f ( 3 ) f ( 4 ) ) \left (\begin{matrix}f(2) - f(1) \\f(1) - f(3) \\f(3) - f(2) \\f(4) - f(2)\end{matrix}\right )= \left (\begin{matrix}-1 & 1 & 0 & 0\\1 & 0 & -1 & 0\\0 & -1 & 1 & 0\\0 & -1 & 0 & 1\\\end{matrix} \right )\left (\begin{matrix}f(1) \\f(2) \\f(3) \\f(4)\end{matrix}\right ) f(2)f(1)f(1)f(3)f(3)f(2)f(4)f(2)=1100101101100001f(1)f(2)f(3)f(4)

Laplacian & incidence

L = B B T {\bf L} = {\bf B} {\bf B}^T L=BBT

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值