“六度空间”理论又称作“六度分隔(Six Degrees of Separation)”理论。这个理论可以通俗地阐述为:“你和任何一个陌生人之间所间隔的人不会超过六个,也就是说,最多通过五个人你就能够认识任何一个陌生人。”如图所示:
“六度空间”理论虽然得到广泛的认同,并且正在得到越来越多的应用。但是数十年来,试图验证这个理论始终是许多社会学家努力追求的目标。然而由于历史的原因,这样的研究具有太大的局限性和困难。随着当代人的联络主要依赖于电话、短信、微信以及因特网上即时通信等工具,能够体现社交网络关系的一手数据已经逐渐使得“六度空间”理论的验证成为可能。
假如给你一个社交网络图,请你对每个节点计算符合“六度空间”理论的结点占结点总数的百分比。
输入格式:
输入第1行给出两个正整数,分别表示社交网络图的结点数N(1<N≤10^3 ,表示人数)、边数M(≤33×N,表示社交关系数)。随后的M行对应M条边,每行给出一对正整数,分别是该条边直接连通的两个结点的编号(节点从1到N编号)。
输出格式:
对每个结点输出与该结点距离不超过6的结点数占结点总数的百分比,精确到小数点后2位。每个结节点输出一行,格式为“结点编号:(空格)百分比%”。
输入样例:
10 9
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10
输出样例:
1: 70.00%
2: 80.00%
3: 90.00%
4: 100.00%
5: 100.00%
6: 100.00%
7: 100.00%
8: 90.00%
9: 80.00%
10: 70.00%
思路
要特别注意输出的格式和起始的结点编号,尤其是百分号也是分两种的…最好直接复制过来。
重点在于深度的判断,用BFS的方法遍历图,设置一个变量来保存每层的最后一个结点,如果当前结点等于此变量,深度+1。
用DFS的方法,每次递归遍历一个结点深度+1,退出递归回溯一个结点深度-1,超时过不去最后一个测试点,在处理环上时间复杂度太高了
BFS全部AC
代码
BFS
#include<bits/stdc++.h>
#define MAX 1001
using namespace std;
bool vis[MAX]={
false};
vector<int>Adj[MAX];
double n;//与该结点距离不超过6的结点数
//广度优先搜索
void BFS(int i,int depth){
int last=i,temp;
vis[i]=true;
queue<int>q;
q.push(i);
while(!q.empty()){
i=q.front();
q.pop(<