学习笔记——树的定义和性质

记:今天做到pat1004题,读完题发现是个关于树的题目,而我之前对树没有了解,但是内心又比较害怕就对树产生了排斥的心理,从今天开始学习树,攻克弱点。

一、常用的概念和性质

1、树可以无结点,为空树

2、树的层次从根结点开始,根结点为第一层,以此类推

3、结点的度:该结点的子树的个数;

     树的度:树的所有结点中最大的度;

4、因为树中不存在环,且一条边连接两个顶点。所以n个结点的树定有n-1条边。也即满足连通,边数等于顶点数减1的结构定是树

5、叶子结点的度为0,当树中只有一个结点是时,根结点也算作叶子结点

6、结点的深度:从根结点开始自顶向下逐层累加到该结点时的深度值;

     结点的高度:从最底层开始自下向上逐层累加到该结点时的高度值;

     树的深度:树中结点的最大深度;

     树的高度:树中结点的最大高度;

     树的高度=树的深度;但是具体到某一个结点就不一定相等了。

7、多棵树组合在一起称为森林,也即森林是若干棵树的集合。

注:第1,5点经常被用来出边界数据

二、二叉树的递归定义

二叉树中任何一个结点的左子树既可以是一颗空树,也可以是一课有左子树和右子树的二叉树;结点的右子树也既可以是一颗空树,又可以是一棵有左子树和右子树的二叉树,这样直到递归边界。

三、两种特殊二叉树

1、满二叉树:每一层的结点个数都达到了当层的最大结点数

2、完全二叉树:除了最下面的一层外其余结点都达到了当层的最大结点数,且最下面一层只能从左到右连续存在若干结点。

3、满二叉树一定是完全二叉树,反过来却不一定

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

.无名之辈

1毛也是爱~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值