问题 B: 二叉树
时间限制: 1 Sec 内存限制: 32 MB
提交: 313 解决: 158
[提交][状态][讨论版][命题人:外部导入]
题目描述
如上所示,由正整数1,2,3……组成了一颗特殊二叉树。我们已知这个二叉树的最后一个结点是n。现在的问题是,结点m所在的子树中一共包括多少个结点。
比如,n = 12,m = 3那么上图中的结点13,14,15以及后面的结点都是不存在的,结点m所在子树中包括的结点有3,6,7,12,因此结点m的所在子树中共有4个结点。
输入
输入数据包括多行,每行给出一组测试数据,包括两个整数m,n (1 <= m <= n <= 1000000000)。最后一组测试数据中包括两个0,表示输入的结束,这组数据不用处理。
输出
对于每一组测试数据,输出一行,该行包含一个整数,给出结点m所在子树中包括的结点的数目。
样例输入
3 7
142 6574
2 754
0 0
样例输出
3
63
498
accept code:
#include <iostream>
using namespace std;
int n=0,m=0;
int ans;
void fun(int m)
{
if(m>n) return;
//ans++;这一句写到这里也可以,反正递归到边界不论写在前还是后都要被执行到。
fun(2*m);//递归调用函数
fun(2*m+1);//应用了二叉树的一个性质,即左子树的根结点=此根结点*2;右子树的根结点=此根结点*2+1
ans++;
}
int main()
{
while(scanf("%d%d",&m,&n))
{
ans=0;
if(m==0&&n==0) break;
fun(m);
cout<<ans<<endl;;
}
return 0;
}