1 定义
-
现给出 f(x)=xTAxf(\boldsymbol{x})=\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}f(x)=xTAx,令 x=Cy\boldsymbol{x}=\boldsymbol{Cy}x=Cy,则 f(x)=CyTACy=yT(CTAC)yf(\boldsymbol{x})=\boldsymbol{Cy}^T\boldsymbol{A}\boldsymbol{Cy}=\boldsymbol{y}^T(\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C})\boldsymbol{y}f(x)=CyTACy=yT(CTAC)y。记 B=CTAC\boldsymbol{B}=\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}B=CTAC,则 f(x)=yTBy=g(y)f(\boldsymbol{x})=\boldsymbol{y}^T\boldsymbol{B}\boldsymbol{y}=g(\boldsymbol{y})f(x)=yTBy=g(y)。此时二次型 f(x)=xTAxf(\boldsymbol{x})=\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}f(x)=xTAx 通过线性变换 x=Cy\boldsymbol{x}=\boldsymbol{Cy}x=Cy 得到一个新二次型 g(y)=yTByg(\boldsymbol{y})=\boldsymbol{y}^T\boldsymbol{B}\boldsymbol{y}g(y)=yTBy。
-
设 A,B\boldsymbol{A},\boldsymbol{B}A,B 为 nnn 阶实对称矩阵,若存在可逆矩阵 C\boldsymbol{C}C,使得 CTAC=B\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}=\boldsymbol{B}CTAC=B,则称 A\boldsymbol{A}A 与 B\boldsymbol{B}B 合同,记作 A≃B\boldsymbol{A} \simeq \boldsymbol{B}A≃B,此时称 f(x)f(\boldsymbol{x})f(x) 与 g(y)g(\boldsymbol{y})g(y) 为合同二次型。
2 本质
- 在二次型中,A\boldsymbol{A}A 与 B\boldsymbol{B}B 的合同,就是指同一个二次型在可逆性变换下的两个不同状态的联系。
3 性质
- A≃A\boldsymbol{A} \simeq \boldsymbol{A}A≃A(反身性)
- 若 A≃B\boldsymbol{A} \simeq \boldsymbol{B}A≃B,则 B≃A\boldsymbol{B} \simeq \boldsymbol{A}B≃A。(对称性)
- 若 A≃B,B≃C\boldsymbol{A} \simeq \boldsymbol{B}, \boldsymbol{B} \simeq \boldsymbol{C}A≃B,B≃C,则 B≃C\boldsymbol{B} \simeq \boldsymbol{C}B≃C。(传递性)
- 若 A≃B\boldsymbol{A} \simeq \boldsymbol{B}A≃B,则 r(A)=r(B)r(\boldsymbol{A})=r(\boldsymbol{B})r(A)=r(B),因此可逆线性变换不会改变二次型的秩。
由于在二次型中,二次型的矩阵都是对称矩阵,所以和对称矩阵合同的矩阵也必是对称矩阵,因为若 A≃B\boldsymbol{A} \simeq \boldsymbol{B}A≃B,即存在可逆矩阵 C\boldsymbol{C}C,使得 CTAC=B\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}=\boldsymbol{B}CTAC=B,其中 AT=A\boldsymbol{A}^T=\boldsymbol{A}AT=A,则 BT=(CTAC)T=CTATC=CTAC=B\boldsymbol{B}^T=(\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C})^T=\boldsymbol{C}^T\boldsymbol{A}^T\boldsymbol{C}=\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}=\boldsymbol{B}BT=(CTAC)T=CTATC=CT</