2.8.1 矩阵的合同

本文详细介绍了矩阵的合同概念,包括定义、性质、合同标准形和合同规范形。通过线性变换,二次型可以转化为标准形和规范形,讨论了配方法和正交变换在化简二次型中的应用,同时提到了惯性定理,强调了合同变换对正负惯性指数和秩的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 定义

  • 现给出 f(x)=xTAxf(\boldsymbol{x})=\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}f(x)=xTAx,令 x=Cy\boldsymbol{x}=\boldsymbol{Cy}x=Cy,则 f(x)=CyTACy=yT(CTAC)yf(\boldsymbol{x})=\boldsymbol{Cy}^T\boldsymbol{A}\boldsymbol{Cy}=\boldsymbol{y}^T(\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C})\boldsymbol{y}f(x)=CyTACy=yT(CTAC)y。记 B=CTAC\boldsymbol{B}=\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}B=CTAC,则 f(x)=yTBy=g(y)f(\boldsymbol{x})=\boldsymbol{y}^T\boldsymbol{B}\boldsymbol{y}=g(\boldsymbol{y})f(x)=yTBy=g(y)。此时二次型 f(x)=xTAxf(\boldsymbol{x})=\boldsymbol{x}^T\boldsymbol{A}\boldsymbol{x}f(x)=xTAx 通过线性变换 x=Cy\boldsymbol{x}=\boldsymbol{Cy}x=Cy 得到一个新二次型 g(y)=yTByg(\boldsymbol{y})=\boldsymbol{y}^T\boldsymbol{B}\boldsymbol{y}g(y)=yTBy

  • A,B\boldsymbol{A},\boldsymbol{B}A,Bnnn 阶实对称矩阵,若存在可逆矩阵 C\boldsymbol{C}C,使得 CTAC=B\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}=\boldsymbol{B}CTAC=B,则称 A\boldsymbol{A}AB\boldsymbol{B}B 合同,记作 A≃B\boldsymbol{A} \simeq \boldsymbol{B}AB,此时称 f(x)f(\boldsymbol{x})f(x)g(y)g(\boldsymbol{y})g(y) 为合同二次型。

2 本质

  • 在二次型中,A\boldsymbol{A}AB\boldsymbol{B}B 的合同,就是指同一个二次型在可逆性变换下的两个不同状态的联系。

3 性质

  • A≃A\boldsymbol{A} \simeq \boldsymbol{A}AA(反身性)
  • A≃B\boldsymbol{A} \simeq \boldsymbol{B}AB,则 B≃A\boldsymbol{B} \simeq \boldsymbol{A}BA。(对称性)
  • A≃B,B≃C\boldsymbol{A} \simeq \boldsymbol{B}, \boldsymbol{B} \simeq \boldsymbol{C}AB,BC,则 B≃C\boldsymbol{B} \simeq \boldsymbol{C}BC。(传递性)
  • A≃B\boldsymbol{A} \simeq \boldsymbol{B}AB,则 r(A)=r(B)r(\boldsymbol{A})=r(\boldsymbol{B})r(A)=r(B),因此可逆线性变换不会改变二次型的秩。

由于在二次型中,二次型的矩阵都是对称矩阵,所以和对称矩阵合同的矩阵也必是对称矩阵,因为若 A≃B\boldsymbol{A} \simeq \boldsymbol{B}AB,即存在可逆矩阵 C\boldsymbol{C}C,使得 CTAC=B\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}=\boldsymbol{B}CTAC=B,其中 AT=A\boldsymbol{A}^T=\boldsymbol{A}AT=A,则 BT=(CTAC)T=CTATC=CTAC=B\boldsymbol{B}^T=(\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C})^T=\boldsymbol{C}^T\boldsymbol{A}^T\boldsymbol{C}=\boldsymbol{C}^T\boldsymbol{A}\boldsymbol{C}=\boldsymbol{B}BT=(CTAC)T=CTATC=CT</

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值