2.2 转置矩阵、逆矩阵、伴随矩阵

1 转置矩阵

  1. ( A T ) T = A (\boldsymbol{A}^T)^T=\boldsymbol{A} (AT)T=A
  2. ( A + B ) T = A T + B T (\boldsymbol{A}+\boldsymbol{B})^T=\boldsymbol{A}^T+\boldsymbol{B}^T (A+B)T=AT+BT
  3. ( k A ) T = k A T (k\boldsymbol{A})^T=k\boldsymbol{A}^T (kA)T=kAT
  4. ( A B ) T = B T A T (\boldsymbol{A}\boldsymbol{B})^T=\boldsymbol{B}^T\boldsymbol{A}^T (AB)T=BTAT

2 逆矩阵

2.1 定义

A , B \boldsymbol{A},\boldsymbol{B} A,B n n n 阶方阵, E \boldsymbol{E} E n n n 阶单位矩阵,若 A B = B A = E \boldsymbol{A}\boldsymbol{B}=\boldsymbol{B}\boldsymbol{A}=\boldsymbol{E} AB=BA=E,则称 A \boldsymbol{A} A 是可逆矩阵,并称 B \boldsymbol{B} B A \boldsymbol{A} A 的唯一逆矩阵,记作 A − 1 \boldsymbol{A}^{-1} A1

2.2 A \boldsymbol{A} A 可逆的充分必要条件

∣ A ∣ ≠ 0 \begin{vmatrix} \boldsymbol{A} \end{vmatrix} \ne 0 A=0。当 ∣ A ∣ ≠ 0 \begin{vmatrix} \boldsymbol{A} \end{vmatrix} \ne 0 A=0 时, A \boldsymbol{A} A 可逆,且 A − 1 = 1 ∣ A ∣ A ∗ \boldsymbol{A}^{-1} = \frac{1}{\begin{vmatrix} \boldsymbol{A} \end{vmatrix}}\boldsymbol{A}^* A1=A1A

2.3 性质

A , B \boldsymbol{A},\boldsymbol{B} A,B 是同阶可逆矩阵,则

  1. ( A − 1 ) − 1 = A (\boldsymbol{A}^{-1})^{-1}=\boldsymbol{A} (A1)1=A
  2. A + B \boldsymbol{A}+\boldsymbol{B} A+B 不一定可逆,且 ( A + B ) − 1 ≠ A − 1 + B − 1 (\boldsymbol{A}+\boldsymbol{B})^{-1} \ne \boldsymbol{A}^{-1} + \boldsymbol{B}^{-1} (A+B)1=A1+B1
  3. k ≠ 0 , ( k A ) − 1 = 1 k A − 1 k \ne 0,(k\boldsymbol{A})^{-1}=\frac{1}{k}\boldsymbol{A}^{-1} k
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值