1 转置矩阵
- ( A T ) T = A (\boldsymbol{A}^T)^T=\boldsymbol{A} (AT)T=A
- ( A + B ) T = A T + B T (\boldsymbol{A}+\boldsymbol{B})^T=\boldsymbol{A}^T+\boldsymbol{B}^T (A+B)T=AT+BT
- ( k A ) T = k A T (k\boldsymbol{A})^T=k\boldsymbol{A}^T (kA)T=kAT
- ( A B ) T = B T A T (\boldsymbol{A}\boldsymbol{B})^T=\boldsymbol{B}^T\boldsymbol{A}^T (AB)T=BTAT
2 逆矩阵
2.1 定义
A , B \boldsymbol{A},\boldsymbol{B} A,B 是 n n n 阶方阵, E \boldsymbol{E} E 是 n n n 阶单位矩阵,若 A B = B A = E \boldsymbol{A}\boldsymbol{B}=\boldsymbol{B}\boldsymbol{A}=\boldsymbol{E} AB=BA=E,则称 A \boldsymbol{A} A 是可逆矩阵,并称 B \boldsymbol{B} B 是 A \boldsymbol{A} A 的唯一逆矩阵,记作 A − 1 \boldsymbol{A}^{-1} A−1。
2.2 A \boldsymbol{A} A 可逆的充分必要条件
∣ A ∣ ≠ 0 \begin{vmatrix} \boldsymbol{A} \end{vmatrix} \ne 0 ∣∣A∣∣=0。当 ∣ A ∣ ≠ 0 \begin{vmatrix} \boldsymbol{A} \end{vmatrix} \ne 0 ∣∣A∣∣=0 时, A \boldsymbol{A} A 可逆,且 A − 1 = 1 ∣ A ∣ A ∗ \boldsymbol{A}^{-1} = \frac{1}{\begin{vmatrix} \boldsymbol{A} \end{vmatrix}}\boldsymbol{A}^* A−1=∣A∣1A∗。
2.3 性质
A , B \boldsymbol{A},\boldsymbol{B} A,B 是同阶可逆矩阵,则
- ( A − 1 ) − 1 = A (\boldsymbol{A}^{-1})^{-1}=\boldsymbol{A} (A−1)−1=A
- A + B \boldsymbol{A}+\boldsymbol{B} A+B 不一定可逆,且 ( A + B ) − 1 ≠ A − 1 + B − 1 (\boldsymbol{A}+\boldsymbol{B})^{-1} \ne \boldsymbol{A}^{-1} + \boldsymbol{B}^{-1} (A+B)−1=A−1+B−1
- k ≠ 0 , ( k A ) − 1 = 1 k A − 1 k \ne 0,(k\boldsymbol{A})^{-1}=\frac{1}{k}\boldsymbol{A}^{-1} k