T3:
给定 n 个数,求最大的数 m ,使得 m 是 n 个数中至少一半的数的约数。
注意:m 不一定在 n 个数中,只要满足要求即可。
注意:m 不一定在 n 个数中,只要满足要求即可。
输入
6
6 2 3 4 5 6
输出
3
对 100% 的输入数据 :n≤100000;1≤数字的大小≤1012 。
直接上程序 这道题是肯定开 long long 的,不过要记住子程序也要开long long(很致命啊!!)
#include<bits/stdc++.h>
using namespace std;
int n,sumyueshu;
long long a[100005],t[100005],q[100005];
bool ex[100005];
int mod=1e6+9;
inline long long read(){
long long i=0;
char ch;
for(ch=getchar();ch<'0'||ch>'9';ch=getchar());
for(;ch>='0'&&ch<='9';ch=getchar()) i=(i<<3)+(i<<1)+ch-'0';
return i;
}
inline long long gcd(long long a,long long b){
if(!b) return a;
return gcd(b,a%b);
}
inline long long erfen_find(long long a){
if(q[sumyueshu]==a) return sumyueshu;
int l=0,r=sumyueshu,mid;
while(l<r){
mid=(l+r)/2;
if(q[mid]<a) l=mid+1;
else r=mid;
}
return l;
}
int main(){
//freopen("half.in","r",stdin);
//freopen("half.out","w",stdout);
scanf("%d",&n);
for(int i=1;i<=n;++i) a[i]=read();
long long ans=0;
int suj=(n*23)%mod;
for(int i=1;i<=15&&i<=n;++i){
memset(t,0,sizeof(t));
memset(q,0,sizeof(q));
sumyueshu=0;
suj=(suj*23)%mod;
suj=suj%n;
if(suj==0) suj++;
while(ex[suj]){
suj++;
if(suj>n) suj-=n;
}
ex[suj]=true;
for(int j=1;j<=sqrt(a[suj]);++j){
if(a[suj]%j==0){
sumyueshu++;
q[sumyueshu]=j;
if(j*j!=a[suj]) sumyueshu++,q[sumyueshu]=a[suj]/j;
}
}
sort(q+1,q+sumyueshu+1);
for(int j=1;j<=n;++j) t[erfen_find(gcd(a[suj],a[j]))]++;
for(int j=1;j<=sumyueshu;++j){
long long sum=0;
if(q[j]<=ans) continue;
else {
for(int k=j;k<=sumyueshu;++k)
if(q[k]%q[j]==0) sum+=t[k];
}
if(sum*2>=n) ans=max(ans,q[j]);
}
}
cout<<ans;
return 0;
}