20170713


T3:

给定 n 个数,求最大的数 m ,使得 m 是 n 个数中至少一半的数的约数。
注意:m 不一定在 n 个数中,只要满足要求即可。

输入




6 2 3 4 5 6

输出

3
对 100% 的输入数据 :n≤100000;1≤数字的大小≤1012 。
直接上程序  这道题是肯定开 long long 的,不过要记住子程序也要开long long(很致命啊!!)
#include<bits/stdc++.h>
using namespace std;
int n,sumyueshu;
long long a[100005],t[100005],q[100005];
bool ex[100005];
int mod=1e6+9;

inline long long read(){
	long long i=0;
	char ch;
	for(ch=getchar();ch<'0'||ch>'9';ch=getchar());
	for(;ch>='0'&&ch<='9';ch=getchar()) i=(i<<3)+(i<<1)+ch-'0';
	return i;
}

inline long long gcd(long long a,long long b){
	if(!b) return a;
	return gcd(b,a%b);
}

inline long long erfen_find(long long a){
	if(q[sumyueshu]==a) return sumyueshu;
	int l=0,r=sumyueshu,mid;
	while(l<r){
		mid=(l+r)/2;
		if(q[mid]<a) l=mid+1;
		else r=mid;
	}
	return l;
}

int main(){
	//freopen("half.in","r",stdin);
	//freopen("half.out","w",stdout);
	scanf("%d",&n);
	for(int i=1;i<=n;++i) a[i]=read();
	long long ans=0;
	
	int suj=(n*23)%mod;
	for(int i=1;i<=15&&i<=n;++i){
		memset(t,0,sizeof(t));
		memset(q,0,sizeof(q));
		sumyueshu=0;
		
		suj=(suj*23)%mod;
		suj=suj%n;
		if(suj==0) suj++;
		while(ex[suj]){
			suj++;
			if(suj>n) suj-=n;
		}
		ex[suj]=true;

		for(int j=1;j<=sqrt(a[suj]);++j){
			if(a[suj]%j==0){
				sumyueshu++;
				q[sumyueshu]=j;
				if(j*j!=a[suj]) sumyueshu++,q[sumyueshu]=a[suj]/j;
			}
		}
		sort(q+1,q+sumyueshu+1);
		
		for(int j=1;j<=n;++j) t[erfen_find(gcd(a[suj],a[j]))]++;
		
		for(int j=1;j<=sumyueshu;++j){
			long long sum=0;
			if(q[j]<=ans) continue;
			else {
				for(int k=j;k<=sumyueshu;++k)
					if(q[k]%q[j]==0) sum+=t[k];
			}
			if(sum*2>=n) ans=max(ans,q[j]);
		}
	}
	cout<<ans;
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值