【动态规划】 线性DP1——经典回顾

本文详细介绍了动态规划中的线性DP,包括最长递增子序列(LIS)和最长公共子序列(LCS)的经典问题。通过实例分析,展示了O(n^2)和O(nlogn)两种解法,并提供了数字三角形问题的自上而下和自下而上的解法。旨在帮助读者深入理解动态规划及其应用。
摘要由CSDN通过智能技术生成

【动态规划】

系列文章

线性DP
1.【动态规划】 线性DP1——经典回顾
2.【动态规划】 线性DP2——进阶1


新的开始

这是动态规划系列的第一篇文章,也是在CSDN开始的第一篇文章。选择动态规划作为开篇,一方面是因为动态规划在算法领域占有十分重要的一席,且其灵活性和技巧性常常令初学者不知所措; 另一方面是因为笔者在做算法题的过程中,发现对其的理解不是十分深刻,处于自己想抓耳挠腮,看题解醍醐灌顶的尴尬境地。基于此,为了巩固经典的DP问题,拓展更高阶的DP技巧,计划阅读李煜东《算法竞赛进阶指南》动态规划章节,作好记录。

经典DP回顾

本节将介绍常见的经典DP题,这些题考察的内容经常作为其他题的子部分。因此,熟练掌握并了解这些题的内部逻辑是十分必要的。

最长递增子序列 (LIS)

题目链接
题目分析

要求得到数组的最长递增子序列的长度。令 d p [ i ] dp[i] dp[i]记录以第 i i i位结尾的最长递增子序列, 初始状态 为: d p [ i ] = 1 ( 0 < = i < n ) dp[i] = 1 \qquad (0 <= i < n) dp[i]=1(0<=i<n) 即以第 i i i位结尾的的最长递增子序列长度至少为1(该位数字本身)。又由于当前状态可通过遍历所有之前比该位数字小的状态得到,故状态转移方程可表示为: d p [ i ] = max ⁡ 0 ≤ j < i ( d p [ i ] , d p [ j ] + 1 ) dp[i] = \max_{0 \leq j < i}(dp[i], dp[j] + 1) dp[i]=0j<imax(dp[i],dp[j]+1)

DP代码 O ( n 2 ) O(n^2) O(n2)
#include<iostream>
#include<vector>
using namespace std;

int main(){
    
    int n;
    cin >> n;
    vector<int> v(n, 0);
    vector<int> dp(n, 1);
    for(int i = 0; i < n; ++i){
        cin >> v[i];
    }
    int ans = 0;
    for(int i = 0; i < n; ++i){
        for(int j = i-1; j >= 0; --j){
            if(v[i] > v[j]) dp[i] = max(dp[i], dp[j] + 1);
        }
        ans = max(ans, dp[i]);
    }
    cout << ans << endl;
    return 0;
}
补充算法 O ( n l o g n ) O(nlogn) O(nlogn)

本题还有复杂度为 O ( n l o g n ) O(nlogn) O(nlogn)的解法,定义递增序列dpdp[i]为所有递增子序列中最小的第 i i i位的值;每次通过二分的方法更新数组dp, 其最终的长度即为所求结果;

#include<iostream>
#include<vector>

using namespace std;

void update(vector<int>& dp, int a){
    auto it = lower_bound(dp.begin(), dp.end(), a);
    if(it == dp.end()) dp.push_back(a);
    else *it = a;
}
int main(){
    int n;
    cin >> n;
    vector<int> dp;
    
    for(int i = 0; i < n; ++i){
        int a; cin >> a;
        update(dp, a);
    }
    cout << dp.size() << endl;
    
    return 0;
}

最长公共子序列 (LCS)

题目链接
题目分析

要求得到两个字符串的最长公共子序列的长度。设两个字符串分别为 A 、 B A、B AB,长度分别为 n 、 m n、m nm。 令 d p [ i ] [ j ] dp[i][j] dp[i][j]记录 A A A字符串的前 i i i位与 B B B字符串的前 j j j位的最长公共子序列的长度。
Trick: 为简化边界条件,默认在两个字符串前面加上与其他字符不同的两个字符。例如,如果原 A 、 B A、B AB数组中不包含 *、# 两个字符,可在 A A A字符串前加*, 在 B B B字符串前加#。 值得注意的是,实际操作中并不需要真的加上这两个字符,只需要知道其存在来写转移方程即可。
初始状态: d p [ 0 ] [ 0 ] = 0 dp[0][0] = 0 dp[0][0]=0 A 、 B A、B AB的首个字符不相等。
状态转移方程:
d p [ i ] [ j ] = { d p [ i − 1 ] [ j − 1 ] + 1 , A [ i − 1 ] = = B [ j − 1 ] m a x ( d p [ i − 1 ] [ j ] , d p [ i ] [ j − 1 ] ) 1 ≤ i ≤ n , 1 ≤ j ≤ m dp[i][j] = \left \{ \begin{array}{c} dp[i-1][j-1] + 1, \quad A[i-1] == B[j-1] \\ max(dp[i-1][j], dp[i][j-1]) \end{array} \right. \qquad 1 \le i \le n, 1 \le j \le m dp[i][j]={dp[i1][j1]+1,A[i1]==B[j1]max(dp[i1][j],dp[i][j1])1in,1jm
上述状态转移方程分为两种情况:

  • A[i-1] == B[j-1]时,当前的dp[i][j]可直接由dp[i-1][j-1]得到;
  • A[i-1] != B[j-1]时,当前的dp[i][j]为两个子问题的较大值;而这两个子问题在计算dp[i][j]之前已经得到,故能实现状态的转移。
代码
#include<iostream>
#include<string>
#include<vector>

using namespace std;

int main(){
    
    int n, m, ans;
    string a, b;
    ans = 0;
    cin >> n >> m;
    cin >> a >> b;
    
    vector<vector<int>> dp(n+1, vector<int>(m+1, 0));
    for(int i = 0; i < n; ++i){
        for(int j = 0; j < m; ++j){
            if(a[i] == b[j]) dp[i+1][j+1] = dp[i][j] + 1;
            else{
                dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1]);
            }
            ans = max(ans, dp[i+1][j+1]);
        }
    }
    cout << ans << endl;
    return 0;
}

数字三角形

题目链接
题目分析

要求找出一条路径,使路径上的数字的和最大。考虑将二维压缩成一维。

  • 自上而下分析时,一维dp更新需要从后往前更新,避免覆盖的值造成影响;
  • 自下而上分析时,需用二维数组保存整个数字三角形,内存消耗较大;(写起来容易,在比赛、面试中推荐)

易错点: 1) ans设置时注意负数; 2)后往前遍历时边界放在循环外计算;

自上而下代码
// 自上而下,空间复杂度较低,需考虑边界条件,且需从后往前遍历
#include<iostream>
#include<vector>
using namespace std;

int main(){
    int n;
    cin >> n;
    vector<int> dp(n, 0);
    vector<int> line(n, 0);
    
    for(int i = 1; i <= n; ++i){
        for(int j = 0; j < i; ++j){
            cin >> line[j];
        }
        if(i > 1) dp[i-1] = line[i-1] + dp[i-2];
        
        for(int j = i-2; j > 0; --j){
            dp[j] = max(dp[j], dp[j-1]) + line[j];
        }
        
        dp[0] += line[0];
    }
    int ans = 0x80000000;
    for(int i = 0; i < dp.size(); ++i){
        ans = max(dp[i], ans);
    }
    cout << ans << endl;
    return 0;
}
自下而上代码
#include<iostream>
#include<vector>
// 自下而上,空间消耗大,写法简单
using namespace std;

int main(){
    int n;
    cin >> n;
    vector<vector<int>> v(n, vector<int>(n, 0));
    for(int i = 0; i < n; ++i){
        for(int j = 0; j <= i; ++j){
            cin >> v[i][j];
        }
    }
    for(int i = n-2; i >= 0; --i){
        for(int j = 0; j <= i; ++j){
            v[i][j] += max(v[i+1][j], v[i+1][j+1]);
        }
    }
    cout << v[0][0] << endl;
    return 0;
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值