【动态规划】
系列文章
线性DP
1.【动态规划】 线性DP1——经典回顾
2.【动态规划】 线性DP2——进阶1
【动态规划】 线性DP1——经典回顾
新的开始
这是动态规划系列的第一篇文章,也是在CSDN开始的第一篇文章。选择动态规划作为开篇,一方面是因为动态规划在算法领域占有十分重要的一席,且其灵活性和技巧性常常令初学者不知所措; 另一方面是因为笔者在做算法题的过程中,发现对其的理解不是十分深刻,处于自己想抓耳挠腮,看题解醍醐灌顶的尴尬境地。基于此,为了巩固经典的DP问题,拓展更高阶的DP技巧,计划阅读李煜东《算法竞赛进阶指南》动态规划章节,作好记录。
经典DP回顾
本节将介绍常见的经典DP题,这些题考察的内容经常作为其他题的子部分。因此,熟练掌握并了解这些题的内部逻辑是十分必要的。
最长递增子序列 (LIS)
题目链接
题目分析
要求得到数组的最长递增子序列的长度。令 d p [ i ] dp[i] dp[i]记录以第 i i i位结尾的最长递增子序列, 初始状态 为: d p [ i ] = 1 ( 0 < = i < n ) dp[i] = 1 \qquad (0 <= i < n) dp[i]=1(0<=i<n) 即以第 i i i位结尾的的最长递增子序列长度至少为1(该位数字本身)。又由于当前状态可通过遍历所有之前比该位数字小的状态得到,故状态转移方程可表示为: d p [ i ] = max 0 ≤ j < i ( d p [ i ] , d p [ j ] + 1 ) dp[i] = \max_{0 \leq j < i}(dp[i], dp[j] + 1) dp[i]=0≤j<imax(dp[i],dp[j]+1)
DP代码 O ( n 2 ) O(n^2) O(n2)
#include<iostream>
#include<vector>
using namespace std;
int main(){
int n;
cin >> n;
vector<int> v(n, 0);
vector<int> dp(n, 1);
for(int i = 0; i < n; ++i){
cin >> v[i];
}
int ans = 0;
for(int i = 0; i < n; ++i){
for(int j = i-1; j >= 0; --j){
if(v[i] > v[j]) dp[i] = max(dp[i], dp[j] + 1);
}
ans = max(ans, dp[i]);
}
cout << ans << endl;
return 0;
}
补充算法 O ( n l o g n ) O(nlogn) O(nlogn)
本题还有复杂度为
O
(
n
l
o
g
n
)
O(nlogn)
O(nlogn)的解法,定义递增序列dp
, dp[i]
为所有递增子序列中最小的第
i
i
i位的值;每次通过二分的方法更新数组dp
, 其最终的长度即为所求结果;
#include<iostream>
#include<vector>
using namespace std;
void update(vector<int>& dp, int a){
auto it = lower_bound(dp.begin(), dp.end(), a);
if(it == dp.end()) dp.push_back(a);
else *it = a;
}
int main(){
int n;
cin >> n;
vector<int> dp;
for(int i = 0; i < n; ++i){
int a; cin >> a;
update(dp, a);
}
cout << dp.size() << endl;
return 0;
}
最长公共子序列 (LCS)
题目链接
题目分析
要求得到两个字符串的最长公共子序列的长度。设两个字符串分别为
A
、
B
A、B
A、B,长度分别为
n
、
m
n、m
n、m。 令
d
p
[
i
]
[
j
]
dp[i][j]
dp[i][j]记录
A
A
A字符串的前
i
i
i位与
B
B
B字符串的前
j
j
j位的最长公共子序列的长度。
Trick: 为简化边界条件,默认在两个字符串前面加上与其他字符不同的两个字符。例如,如果原
A
、
B
A、B
A、B数组中不包含 *、# 两个字符,可在
A
A
A字符串前加*, 在
B
B
B字符串前加#。 值得注意的是,实际操作中并不需要真的加上这两个字符,只需要知道其存在来写转移方程即可。
初始状态:
d
p
[
0
]
[
0
]
=
0
dp[0][0] = 0
dp[0][0]=0 即
A
、
B
A、B
A、B的首个字符不相等。
状态转移方程:
d
p
[
i
]
[
j
]
=
{
d
p
[
i
−
1
]
[
j
−
1
]
+
1
,
A
[
i
−
1
]
=
=
B
[
j
−
1
]
m
a
x
(
d
p
[
i
−
1
]
[
j
]
,
d
p
[
i
]
[
j
−
1
]
)
1
≤
i
≤
n
,
1
≤
j
≤
m
dp[i][j] = \left \{ \begin{array}{c} dp[i-1][j-1] + 1, \quad A[i-1] == B[j-1] \\ max(dp[i-1][j], dp[i][j-1]) \end{array} \right. \qquad 1 \le i \le n, 1 \le j \le m
dp[i][j]={dp[i−1][j−1]+1,A[i−1]==B[j−1]max(dp[i−1][j],dp[i][j−1])1≤i≤n,1≤j≤m
上述状态转移方程分为两种情况:
- 当
A[i-1] == B[j-1]
时,当前的dp[i][j]
可直接由dp[i-1][j-1]
得到; - 当
A[i-1] != B[j-1]
时,当前的dp[i][j]
为两个子问题的较大值;而这两个子问题在计算dp[i][j]
之前已经得到,故能实现状态的转移。
代码
#include<iostream>
#include<string>
#include<vector>
using namespace std;
int main(){
int n, m, ans;
string a, b;
ans = 0;
cin >> n >> m;
cin >> a >> b;
vector<vector<int>> dp(n+1, vector<int>(m+1, 0));
for(int i = 0; i < n; ++i){
for(int j = 0; j < m; ++j){
if(a[i] == b[j]) dp[i+1][j+1] = dp[i][j] + 1;
else{
dp[i+1][j+1] = max(dp[i+1][j], dp[i][j+1]);
}
ans = max(ans, dp[i+1][j+1]);
}
}
cout << ans << endl;
return 0;
}
数字三角形
题目链接
题目分析
要求找出一条路径,使路径上的数字的和最大。考虑将二维压缩成一维。
- 自上而下分析时,一维dp更新需要从后往前更新,避免覆盖的值造成影响;
- 自下而上分析时,需用二维数组保存整个数字三角形,内存消耗较大;(写起来容易,在比赛、面试中推荐)
易错点: 1) ans
设置时注意负数; 2)后往前遍历时边界放在循环外计算;
自上而下代码
// 自上而下,空间复杂度较低,需考虑边界条件,且需从后往前遍历
#include<iostream>
#include<vector>
using namespace std;
int main(){
int n;
cin >> n;
vector<int> dp(n, 0);
vector<int> line(n, 0);
for(int i = 1; i <= n; ++i){
for(int j = 0; j < i; ++j){
cin >> line[j];
}
if(i > 1) dp[i-1] = line[i-1] + dp[i-2];
for(int j = i-2; j > 0; --j){
dp[j] = max(dp[j], dp[j-1]) + line[j];
}
dp[0] += line[0];
}
int ans = 0x80000000;
for(int i = 0; i < dp.size(); ++i){
ans = max(dp[i], ans);
}
cout << ans << endl;
return 0;
}
自下而上代码
#include<iostream>
#include<vector>
// 自下而上,空间消耗大,写法简单
using namespace std;
int main(){
int n;
cin >> n;
vector<vector<int>> v(n, vector<int>(n, 0));
for(int i = 0; i < n; ++i){
for(int j = 0; j <= i; ++j){
cin >> v[i][j];
}
}
for(int i = n-2; i >= 0; --i){
for(int j = 0; j <= i; ++j){
v[i][j] += max(v[i+1][j], v[i+1][j+1]);
}
}
cout << v[0][0] << endl;
return 0;
}