torch.cuda.amp.autocast的使用
torch.cuda.amp.autocast是PyTorch中一种自动混合精度计算的方法,它允许在深度学习模型的训练过程中自动执行混合精度计算,从而加快训练速度并减少显存占用。
在使用torch.cuda.amp.autocast时,一般会将模型的前向传播和反向传播包裹在with torch.cuda.amp.autocast()上下文中,以指示PyTorch使用混合精度计算。在这个上下文中,PyTorch会自动将部分计算转换为半精度浮点数(FP16),以提高计算速度和减少显存使用。
以下是一个简单的代码示例,
import torch
from torch.cuda.amp import autocast, GradScaler
class MyModel(torch.nn.Module):
def __init__(self, fp16=False):
super(MyModel, self).__init__()
self.fp16 = fp16
def forward(self, x):
with autocast(enabled=self.fp16):
output = x * 2
return output
model = MyModel(fp16=True)
input_data = torch.randn(1, 3)
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
# 创建梯度缩放器
scaler = GradScaler()
# 前向传播和反向传播
with autocast(enabled=model.fp16):
output =