分布式链路跟踪系统:
微服务间难免会相互调用,客户端一个请求,对应后端可能要经过多个微服务间互相调用来处理。这中间如果出现异常就很难定位(特别是进行了负载均衡转发后)。因此,跟踪整个调用链就成了迫切的需求。
spring cloud提供了spring cloud sleuth + zipkin来满足此需求。具体原理看下图:
服务追踪的追踪单元是从客户发起请求(request)抵达被追踪系统的边界开始,到被追踪系统向客户返回响应(response)为止的过程,称为一个“trace”。每个 trace 中会调用若干个服务,为了记录调用了哪些服务,以及每次调用的消耗时间等信息,在每次调用服务时,埋入一个调用记录,称为一个“span”。这样,若干个有序的 span 就组成了一个 trace。在系统向外界提供服务的过程中,会不断地有请求和响应发生,也就会不断生成 trace,把这些带有span 的 trace 记录下来,就可以描绘出一幅系统的服务拓扑图。附带上 span 中的响应时间,以及请求成功与否等信息,就可以在发生问题的时候,找到异常的服务;根据历史数据,还可以从系统整体层面分析出哪里性能差,定位性能优化的目标。
mark下实现过程:
zipkin服务端:
基础依赖包:
<dependencies>
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-eureka</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.java</groupId>
<artifactId>zipkin-server</artifactId>
</dependency>
<dependency>
<groupId>io.zipkin.java</groupId>
<artifactId>zipkin-autoconfigure-ui</artifactId>
</dependency>
</dependencies>
基础配置:
启动类上加上:@EnableZipkinServer
客户端(服务调用端):
如接入了zuul则在zuul服务端进行修改,如作为接口提供者,则也需要接入。
基本引入:
<!-- zipkin分布式链路跟踪 -->
<dependency>
<groupId>org.springframework.cloud</groupId>
<artifactId>spring-cloud-starter-zipkin</artifactId>
</dependency>
配置文件加上:
一个是zipkin的服务地址,一个是采样比例,1.0表示全部都记录。
#zipkin
spring.zipkin.base-url=http://localhost:9009
spring.sleuth.sampler.percentage=1.0