题目背景
栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表。
栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈)。
栈的重要性不言自明,任何一门数据结构的课程都会介绍栈。宁宁同学在复习栈的基本概念时,想到了一个书上没有讲过的问题,而他自己无法给出答案,所以需要你的帮忙。
题目描述
宁宁考虑的是这样一个问题:一个操作数序列,从1,2,一直到n(图示为1到3的情况),栈A的深度大于n。
现在可以进行两种操作,
1.将一个数,从操作数序列的头端移到栈的头端(对应数据结构栈的push操作)
将一个数,从栈的头端移到输出序列的尾端(对应数据结构栈的pop操作)
使用这两种操作,由一个操作数序列就可以得到一系列的输出序列,下图所示为由1 2 3生成序列2 3 1的过程。
(原始状态如上图所示)
你的程序将对给定的n,计算并输出由操作数序列1,2,…,n经过操作可能得到的输出序列的总数。
输入输出格式
输入格式:
输入文件只含一个整数n(1≤n≤18)
输出格式:
输出文件只有一行,即可能输出序列的总数目
如题这是一道有关出栈序列的题,然而并不能用栈去做,多数的做法都是卡特兰数,这里讲一种dfs的做法,先看代码:
#include<iostream>
#include<string.h>
using namespace std;
int n,ans=0;
int v[100][100];
int dfs(int x,int top)
{
if(!x)return 1;
if(!top && x)
{
if(!v[x-1][top+1])
v[x-1][top+1]=dfs(x-1,top+1);
return v[x-1][top+1];
}
if(!v[x][top])
v[x][top]=dfs(x-1,top+1)+dfs(x,top-1);
return v[x][top];
}
int main()
{
scanf("%d",&n);
memset(v,0,sizeof(v));
printf("%d",dfs(n,0));
return 0;
}
分类讨论栈内元素与栈外元素分别为零和都不为零:当栈外元素为零时显然只有一种情况,当栈内元素为零则dfs(只进行入栈操作),当栈内栈外都不为零就同时进行出栈入栈操作。下面详细解释:
1.v[x][y]
中x表示栈外元素,y表示栈内元素
2.dfs(n,0)
表示初始时栈外有n个元素,栈内为零
3.if(!x) return 1
栈外元素为零表示这种情况达成,记录
4.if(!top && x)
表示栈内元素为零,进栈操作
5.if(!v[x][top])
栈内外都不为空
6.上一个解释中取非的原因是表示这种情况未被走过,倘若当下x,top被讨论过直接调用就好了,相当于进行了记忆化处理。
7.return v[x][top];
记得记录