
机器学习
文章平均质量分 68
椒椒。
仙女学习,天使落泪。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Qwen3论文研读
qwen3论文研读原创 2025-07-29 14:45:01 · 535 阅读 · 0 评论 -
ollama本地大模型,ollama及其openai接口实现
ollama本地部署大模型接口实现原创 2025-03-20 15:54:10 · 1291 阅读 · 0 评论 -
机器学习sklearn19.0聚类算法——Kmeans算法
机器学习sklearn19.0聚类算法——Kmeans算法原创 2020-07-28 16:20:49 · 185 阅读 · 0 评论 -
SVM之入门理解
SVM属于判别式的模型,主要是进行二分类的分类模型,现在模型也被广泛用于多分类。理解svm的原理我们需要从以下几点来入手。主要思想核函数松弛变量(偏移量)SVM的主要思想:根本问题就是要找一个分割线/分割平面。思想是:建立一个最优决策超平面,使得该平面两侧距离该平面最近的两类样本之间的距离最大化,从而对分类问题提供良好的泛化能力。对于一个多维的样本集,系统随机产生一个超平面并不断移动,对样本进行分类,直到训练样本中属于不同类别的样本点正好位于该超平面的两侧,满足该条件的超平面可能有很多个,SV原创 2020-07-28 11:02:12 · 863 阅读 · 0 评论 -
激活函数-relu-sigmoid-tanh
1.激活函数1.1激活函数是什么? 激活函数的主要作用是提供网络的非线性建模能力。如果没有激活函数,那么该网络仅能够表达线性映射,此时即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。因此也可以认为,只有加入了激活函数之后,深度神经网络才具备了分层的非线性映射学习能力。 那么激活函数应该具有什么样的性质呢?可微性: 当优化方法是基于梯度的时候,这个性质是必须的。单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数。输出值的范围: 当激活函数输出值是 有限 的时候,基于梯度的优化方法会原创 2020-07-27 22:17:08 · 1595 阅读 · 0 评论 -
对于机器学习中L1,L2正则化的理解--数据挖掘面试
本人对于正则化l1和l2的理解:首先,什么是L1,L2正则化:L1正则化就是对各个特征系数的绝对值之和;L2正则化就是对各个特征系数的平方和再求平方根;L1,L2正则化有什么作用?一般来说:L1:L1可以通过构建稀疏权重矩阵来进行特征选择。一般来说,我们在进行特种选择时,特征过多,有的特征特别稀疏,对于那些稀疏的特征,其实对于总的特征选择而言影响并不大,所以,为了选择关键特征,可以l1来对那些系数特征进行过滤,使用l1构造系数矩阵,这样就可以去除那些稀疏特征,起到一个特征选择的作用。当l1正原创 2020-07-24 17:08:58 · 228 阅读 · 0 评论 -
熵-信息熵-信息增益-理解
熵:什么是熵?详细见:点击链接详细理解:见:信息增益原创 2020-07-24 15:58:53 · 170 阅读 · 0 评论 -
极大似然估计(MR)
似然与概率在统计学中,似然函数(likelihood function,通常简写为likelihood,似然)是一个非常重要的内容,在非正式场合似然和概率(Probability)几乎是一对同义词,但是在统计学中似然和概率却是两个不同的概念。概率是在特定环境下某件事情发生的可能性,也就是结果没有产生之前依据环境所对应的参数来预测某件事情发生的可能性,比如抛硬币,抛之前我们不知道最后是哪一面朝上,但是根据硬币的性质我们可以推测任何一面朝上的可能性均为50%,这个概率只有在抛硬币之前才是有意义的,抛完硬币后的原创 2020-07-22 10:08:44 · 626 阅读 · 0 评论