vannaai本地部署安装

环境配置

  • 这里需要注意的是,python版本3.7,安装会报错,最好用更高版本的Python.
conda create -n vanna -y python=3.9
conda activate vanna
pip install 'vanna[chromadb,ollama,mysql]'
pip install ipykernel

数据库配置

本人用的是开源的禅道系统数据库,请保证本地的mysql数据库已经正常运行,并且数据库已经连接成功。


import pymysql


def db_connet():
    conn = pymysql.connect(
        host='127.0.0.1',  # 连接名称,默认127.0.0.1
        user='root',  # 用户名
        passwd='123456',  # 密码
        port=3306,  # 端口,默认为3306
        db='zentao',  # 数据库名称
        charset='utf8',  # 字符编码
    )
    print("----数据库连接成功------", conn)
    return conn
print(db_connet())

向量化模型下载配置

  1. 模型下载

  2. 缺少环境包,自行安装一下,下载向量化onnx嵌入模型。下载成功后,模型会保存在本地home/.cach/modelscope/下。

#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('wengad/all-MiniLM-L6-v2')
 #在本地./cach/modelscope/
  1. 向量化模型配置
    home/.cach/modelscope/all-MiniLM-L6-v2文件下的压缩包加压后,放在 /home/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx目录下。

vann 本地运行

  1. vanna本地环境测试
  2. 导入mysql数据库中的数据、
from vanna.ollama import Ollama
from vanna.chromadb import ChromaDB_VectorStore

class MyVanna(ChromaDB_VectorStore, Ollama):
    def __init__(self, config=None):
        ChromaDB_VectorStore.__init__(self, config=config)
        Ollama.__init__(self, config=config)
#使用pymysql直接连接本地禅道数据库,获取数据库表结构及其备注信息。
#/opt/zbox/zbox 基本配置信息
import pymysql
import csv
from datetime import datetime
#使用pymysql直接连接本地禅道数据库,获取数据库表结构及其备注信息。
#/opt/zbox/zbox 基本配置信息
import os.path

import pymysql
import csv
from datetime import datetime
def sql_create():
    create_list=[]
    conn = pymysql.connect(
        host='127.0.0.1',  # 连接名称,默认127.0.0.1
        user='root',  # 用户名
        passwd='123456',  # 密码
        port=3306,  # 端口,默认为3306
        db='zentao',  # 数据库名称
        charset='utf8',  # 字符编码
    )

    print(conn)
    # 获取游标
    cursor = conn.cursor()
    print(cursor)
    # 执行sql语句execute和executemany
    # 定义要执行的SQL语句列表
    # ex_bid,ex_bidPmProject,ex_bidProject,
    # ex_bidSocialInsurance,ex_bidTeam,ex_company,
    # ex_dept,ex_file,ex_project,ex_team,ex_teamProject,
    # ex_teamQualification,ex_teamWork
    sql_statements = [
        "SHOW CREATE TABLE ex_bid;",
        "SHOW CREATE TABLE ex_bidPmProject;",
        "SHOW CREATE TABLE ex_bidProject;",
        "SHOW CREATE TABLE ex_bidSocialInsurance;",
        "SHOW CREATE TABLE ex_bidTeam;",
        "SHOW CREATE TABLE ex_company;",
        "SHOW CREATE TABLE ex_dept;",
        "SHOW CREATE TABLE ex_file;",
        "SHOW CREATE TABLE ex_project;",
        "SHOW CREATE TABLE ex_team;",
        "SHOW CREATE TABLE ex_teamProject;",
        "SHOW CREATE TABLE ex_teamQualification;",
        "SHOW CREATE TABLE ex_teamWork;"
    ]

    # 循环执行每条SQL语句
    current_time=datetime.now().strftime('%Y%m%d%H%M%S')
    csv_file_path = f'./data_out/table_structures_{current_time}.csv'
    if not os.path.exists('./data_out/'):
        os.mkdir('./data_out/')
    with open(csv_file_path, 'w', newline='', encoding='utf-8') as csvfile:
        csv_writer = csv.writer(csvfile)
        # 写入标题行
        csv_writer.writerow(['Table', 'Create Statement'])
        for sql in sql_statements:
            cursor.execute(sql)
            # cursor.execute("SHOW CREATE TABLE zt_story;")
            # 循环执行每条SQL语句
            results = cursor.fetchall()
            for result in results:
                # result[0]是表名,result[1]是创建表的完整语句
                csv_writer.writerow(result)
                create_list.append(result)
    cursor.close()  # 关闭查询游标
    conn.commit()  # 事务的提交
    conn.close()  # 查询完毕,需要关闭连接,释放计算机资源
    print('sql执行成功')
    return create_list


vn = MyVanna(config={'model': 'deepseek-r1:7b','ollama_host':'http://localhost:11434'})



vn.connect_to_mysql(host='127.0.0.1', dbname='zentao', user='root', password='123456', port=3306)

# The information schema query may need some tweaking depending on your database. This is a good starting point.
df_information_schema = vn.run_sql("SELECT * FROM INFORMATION_SCHEMA.COLUMNS")

# This will break up the information schema into bite-sized chunks that can be referenced by the LLM
plan = vn.get_training_plan_generic(df_information_schema)




results=sql_create()
for result in results:
    vn.train(ddl=result[1])
# with open('./sql_data/ex_bidProject.sql', 'r', encoding='utf-8') as file:
#     sql_script = file.read()
#     vn.train(ddl=sql_script)
#     # 执行SQL脚本


from vanna.flask import VannaFlaskApp
app = VannaFlaskApp(vn)
app.run(port=5001)


  1. 页面测试效果
    http://localhost:5001
    在这里插入图片描述
<think>好的,我现在需要帮助用户了解如何在本地环境中部署Vanna。首先,我得回忆一下用户提供的引用内容,特别是引用[2]中提到的本地部署vanna对接数据库的步骤。根据用户的问题,他们可能需要详细的步骤指南,包括安装、配置和基本使用。 首先,我应该检查系统级指令,确保所有数学公式都正确使用$...$或$$...$$格式,但这个问题可能不涉及数学表达式,所以可能不需要处理这部分。然后,确保用中文回答,结构清晰,分步骤说明。 接下来,根据引用[2],本地部署vanna需要对目录进行分析,所以可能需要先安装必要的依赖,比如Python环境、vanna库以及数据库驱动。用户可能需要知道如何安装这些组件,比如使用pip安装vanna和相应的数据库适配器,如psycopg2用于PostgreSQL。 然后,配置Vanna可能涉及设置数据库连接,用户需要创建Vanna实例并连接到数据库。这部分需要详细说明如何初始化模型,设置API密钥(如果有的话),以及配置数据库连接参数。 之后,可能需要训练模型,让Vanna理解自然语言到SQL的转换。引用中提到需要训练数据,比如DDL语句、文档或现有查询,所以需要指导用户如何收集和输入这些数据到Vanna中。 最后,用户可能需要验证部署是否成功,例如通过自然语言提问生成SQL并执行查询。这里需要提供一个简单的示例,比如用户输入问题,Vanna生成SQL,然后执行并返回结果。 还需要确保回答中引用相关的引用内容,比如在步骤末尾添加[^2]等。同时,生成相关问题,比如如何优化Vanna的准确性、处理复杂查询或整合到现有系统等。 需要检查是否有遗漏的步骤,比如是否需要额外的配置或依赖,比如设置环境变量或处理权限问题。可能还需要提到如何处理常见的错误,比如连接失败或训练数据不足的情况。 另外,参考用户提供的示例回答结构,比如快速排序的示例,可能需要用类似的格式,分步骤说明,代码块用正确的语法高亮,比如Python代码。同时,确保语言简洁,避免技术术语过多,适合非技术人员理解。 总结步骤应该是:安装依赖、配置Vanna、训练模型、使用示例。每个步骤需要详细但不过于复杂,确保用户能逐步跟随操作。同时,注意引用来源,确保信息准确可靠。</think>### 本地部署 Vanna 的步骤指南 #### 1. **环境准备** - 安装 Python(推荐 3.8+ 版本)和包管理工具 `pip`。 - 创建虚拟环境(可选但建议): ```bash python -m venv vanna-env source vanna-env/bin/activate # Linux/macOS vanna-env\Scripts\activate # Windows ``` - 安装 Vanna 和相关依赖: ```bash pip install vanna psycopg2-binary # 以 PostgreSQL 为例,其他数据库需替换驱动(如 pymysql) ``` #### 2. **初始化 Vanna 实例** - 创建 Python 脚本(如 `vanna_demo.py`),配置 Vanna 并连接数据库: ```python from vanna.local import LocalContext_OpenAI # 初始化模型(使用本地模式或 OpenAI API) vn = LocalContext_OpenAI( config={'api_key': 'YOUR_OPENAI_KEY'} # 若使用本地模式可忽略 API 密钥 ) # 连接数据库(以 PostgreSQL 为例) vn.connect_to_postgres( host='localhost', dbname='your_database', user='your_user', password='your_password', port=5432 ) ``` #### 3. **训练模型** - **方式 1:导入数据库 DDL 语句** 提供表结构定义文件(如 `schema.sql`): ```python vn.train(ddl=""" CREATE TABLE employees ( id INT PRIMARY KEY, name VARCHAR(100), department VARCHAR(50) ); """) ``` - **方式 2:加载现有 SQL 查询** 添加历史查询示例以增强模型理解: ```python vn.train(sql="SELECT name, department FROM employees WHERE id = 1001;") ``` - **方式 3:使用文档训练(可选)** 上传业务文档(如 CSV 或 Markdown)补充语义信息: ```python vn.train(documentation="部门表包含员工 ID、姓名和所属部门字段") ``` #### 4. **验证部署** - 通过自然语言生成 SQL 并执行: ```python question = "列出技术部的所有员工姓名" sql = vn.generate_sql(question) # 生成 SQL print("生成的 SQL:", sql) result = vn.run_sql(sql) # 执行查询 print("查询结果:", result) ``` - 输出示例: ``` 生成的 SQL: SELECT name FROM employees WHERE department = '技术部' 查询结果: [('张三',), ('李四',)] ``` #### 5. **扩展配置(可选)** - **自定义提示模板**:调整 `vn.train` 中的提示词优化 SQL 生成逻辑。 - **接入其他数据库**:修改 `connect_to_postgres` 为 MySQL/Snowflake 等方法。 - **日志与调试**:启用 `vn.log=true` 查看生成过程的中间步骤[^2]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

椒椒。

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值