环境配置
- 这里需要注意的是,python版本3.7,安装会报错,最好用更高版本的Python.
conda create -n vanna -y python=3.9
conda activate vanna
pip install 'vanna[chromadb,ollama,mysql]'
pip install ipykernel
数据库配置
本人用的是开源的禅道系统数据库,请保证本地的mysql数据库已经正常运行,并且数据库已经连接成功。
import pymysql
def db_connet():
conn = pymysql.connect(
host='127.0.0.1', # 连接名称,默认127.0.0.1
user='root', # 用户名
passwd='123456', # 密码
port=3306, # 端口,默认为3306
db='zentao', # 数据库名称
charset='utf8', # 字符编码
)
print("----数据库连接成功------", conn)
return conn
print(db_connet())
向量化模型下载配置
-
模型下载
-
缺少环境包,自行安装一下,下载向量化onnx嵌入模型。下载成功后,模型会保存在本地home/.cach/modelscope/下。
#模型下载
from modelscope import snapshot_download
model_dir = snapshot_download('wengad/all-MiniLM-L6-v2')
#在本地./cach/modelscope/
- 向量化模型配置
home/.cach/modelscope/all-MiniLM-L6-v2文件下的压缩包加压后,放在 /home/.cache/chroma/onnx_models/all-MiniLM-L6-v2/onnx目录下。
vann 本地运行
- vanna本地环境测试
- 导入mysql数据库中的数据、
from vanna.ollama import Ollama
from vanna.chromadb import ChromaDB_VectorStore
class MyVanna(ChromaDB_VectorStore, Ollama):
def __init__(self, config=None):
ChromaDB_VectorStore.__init__(self, config=config)
Ollama.__init__(self, config=config)
#使用pymysql直接连接本地禅道数据库,获取数据库表结构及其备注信息。
#/opt/zbox/zbox 基本配置信息
import pymysql
import csv
from datetime import datetime
#使用pymysql直接连接本地禅道数据库,获取数据库表结构及其备注信息。
#/opt/zbox/zbox 基本配置信息
import os.path
import pymysql
import csv
from datetime import datetime
def sql_create():
create_list=[]
conn = pymysql.connect(
host='127.0.0.1', # 连接名称,默认127.0.0.1
user='root', # 用户名
passwd='123456', # 密码
port=3306, # 端口,默认为3306
db='zentao', # 数据库名称
charset='utf8', # 字符编码
)
print(conn)
# 获取游标
cursor = conn.cursor()
print(cursor)
# 执行sql语句execute和executemany
# 定义要执行的SQL语句列表
# ex_bid,ex_bidPmProject,ex_bidProject,
# ex_bidSocialInsurance,ex_bidTeam,ex_company,
# ex_dept,ex_file,ex_project,ex_team,ex_teamProject,
# ex_teamQualification,ex_teamWork
sql_statements = [
"SHOW CREATE TABLE ex_bid;",
"SHOW CREATE TABLE ex_bidPmProject;",
"SHOW CREATE TABLE ex_bidProject;",
"SHOW CREATE TABLE ex_bidSocialInsurance;",
"SHOW CREATE TABLE ex_bidTeam;",
"SHOW CREATE TABLE ex_company;",
"SHOW CREATE TABLE ex_dept;",
"SHOW CREATE TABLE ex_file;",
"SHOW CREATE TABLE ex_project;",
"SHOW CREATE TABLE ex_team;",
"SHOW CREATE TABLE ex_teamProject;",
"SHOW CREATE TABLE ex_teamQualification;",
"SHOW CREATE TABLE ex_teamWork;"
]
# 循环执行每条SQL语句
current_time=datetime.now().strftime('%Y%m%d%H%M%S')
csv_file_path = f'./data_out/table_structures_{current_time}.csv'
if not os.path.exists('./data_out/'):
os.mkdir('./data_out/')
with open(csv_file_path, 'w', newline='', encoding='utf-8') as csvfile:
csv_writer = csv.writer(csvfile)
# 写入标题行
csv_writer.writerow(['Table', 'Create Statement'])
for sql in sql_statements:
cursor.execute(sql)
# cursor.execute("SHOW CREATE TABLE zt_story;")
# 循环执行每条SQL语句
results = cursor.fetchall()
for result in results:
# result[0]是表名,result[1]是创建表的完整语句
csv_writer.writerow(result)
create_list.append(result)
cursor.close() # 关闭查询游标
conn.commit() # 事务的提交
conn.close() # 查询完毕,需要关闭连接,释放计算机资源
print('sql执行成功')
return create_list
vn = MyVanna(config={'model': 'deepseek-r1:7b','ollama_host':'http://localhost:11434'})
vn.connect_to_mysql(host='127.0.0.1', dbname='zentao', user='root', password='123456', port=3306)
# The information schema query may need some tweaking depending on your database. This is a good starting point.
df_information_schema = vn.run_sql("SELECT * FROM INFORMATION_SCHEMA.COLUMNS")
# This will break up the information schema into bite-sized chunks that can be referenced by the LLM
plan = vn.get_training_plan_generic(df_information_schema)
results=sql_create()
for result in results:
vn.train(ddl=result[1])
# with open('./sql_data/ex_bidProject.sql', 'r', encoding='utf-8') as file:
# sql_script = file.read()
# vn.train(ddl=sql_script)
# # 执行SQL脚本
from vanna.flask import VannaFlaskApp
app = VannaFlaskApp(vn)
app.run(port=5001)
- 页面测试效果
http://localhost:5001