实验:在原异常检测中加入危急值判定(正在调试中)
遇到以下三种情况也要判定为“异常”
严重快速性心律失常
量化:
1.出现VF and VFib;
2.心率>=150且持续时长>=30s;
3.Anormal 且 心率>=200;
4.len([r:r+1])长度<=250ms
严重缓慢性心律失常
量化
1.心率<=35bpm;
2.len([r:r+1])长于平均RR间期,且时长大于3秒
3.出现R on T 室性早搏
数据集
加入心肌梗塞的心电数据集,对原模型进行开放集识别验证
论文阅读 《Designing ECG Monitoring Healthcare System with Federated Transfer Learning and Explainable AI》(2021年)
物联网设备能够每天收集大量数据。这种数据收集和成倍增长的计算资源开启了信息技术领域的新领域,特别是深度学习 。虽然深度学习是一个常用概念,但由于过去可用的数据和计算资源有限,其使用受到限制。然而,由于互联网、物联网设备和不断增长的计算能力,如今我们可以看到深度学习几乎在每个领域都发生了革命性的变化,包括医疗、经济、农业和军事。在医疗保健应用程序方面,全球各地都在生成大量数据,这些数据具有独特的特性。大多数与医疗保健相关的数据都是多维的,这使得使用经典机器学习(ML)模型(例如决策树和随机森林)变得富有挑战性和复杂。然而,新一代机器学习模型,特别是基于深度学习的模型,由于其自学习能力,可以解决与多维数据相关的问题。在医疗保健行业,深度学习发挥了关键作用,例如帮助诊断威胁生命的疾病。
首先,要训练深度学习模型,需要大量的训练数据,但每个竖井(例如,医院)的数据量非常有限,