利用python实现决策树ID3算法

通过长发的长短与粗细进行决策树的构造

如下数据:


用熵来表示信息的复杂度,熵越大,则信息越复杂。公式如下: 


信息增益(information gain),表示两个信息熵的差值

将数据集设为样本D,则熵为:

H(D)=-[3/8*log2(3/8)+5/8*log2(5/8)]=0.9544 

先以头发长短分计算出熵:

以头发长短分可分为长头发和短头发,所以:

H(D|A)=-4/8*(1/4*log2(1/4)+3/4*log2(3/4))-4/8*(2/4*log2(2/4)+2/4*log2(2/4))=0.9057

所以先以头发分的信息增益:

I(D,A)=H(D)-H(D|A)=0.0487

先以声音粗细分计算出熵:
以声音粗细分可分为粗声音和细声音, 所以:
H(D|B)=-6/8*( 3/6*log2(3/6)+3/6*log2(3/6) )-2/8*( 2/2*log2(2/2) )= 0.75

所以先以声音分的信息增益:

I(D,B)=H(D)-H(D|B)=0.2087


因为I(D,B)>I(D,A)

所以先按声音特征分类,信息增益更大,区分样本的能力更强,更具有代表性。 这就是ID3算法的核心思想。


通过python实现ID3算法:
#!/usr/bin/env python3
# -*- coding:utf-8 -*-
from asn1crypto.cms import ClassList
from audioop import reverse
from math import log
import operator


def calcShannonEnt(dataSet):        #计算数据的熵
    numEntries = len(dataSet)
    labelCounts = {}
    for featVec in dataSet:
        currentLabel = featVec[-1]
        if currentLabel not in labelCounts.keys():
            labelCounts[currentLabel] = 0
        labelCounts[currentLabel] += 1
    shannonEnt = 0
    for key in labelCounts:
        prob = float(labelCounts[key]) / numEntries
        shannonEnt -= prob * log(prob, 2)
    return shannonEnt


def createDataSet1():        #创建数据集
    dataSet = [['长', '粗', '男'],
               ['短', '粗', '男'],
               ['短', '粗', '男'],
               ['长', '细', '女'],
               ['短', '细', '女'],
               ['短', '粗', '女'],
               ['长', '粗', '女'],
               ['长', '粗', '女']]
    labels = ['头发', '声音']
    return dataSet, labels


def splitDataSet(dataSet, axis, value):       #按某个特征分类
    retDataSet = []
    for featVec in dataSet:
        if featVec[axis] == value:
            reducedFeatvec = featVec[:axis]
            reducedFeatvec.extend(featVec[axis + 1:])
            retDataSet.append(reducedFeatvec)
    return retDataSet


def chooseBestFeatureToSplit(dataSet):      #选择最优的特征分类  
    numFeatures = len(dataSet[0]) - 1
    baseEntropy = calcShannonEnt(dataSet)
    bestInfoGain = 0
    bestFeature = -1
    for i in range(numFeatures):
        featList = [example[i]for example in dataSet]
        uniqueVals = set(featList)
        newEntropy = 0
        for value in uniqueVals:
            subDataSet = splitDataSet(dataSet, i, value)
            prob = len(subDataSet) / float(len(dataSet))
            newEntropy += prob * calcShannonEnt(subDataSet)
        infoGain = baseEntropy - newEntropy
        if(infoGain > bestInfoGain):        #如果按某特征分类后熵值减少最大,则此特征为最优分类
            bestInfoGain = infoGain
            bestFeature = i
    return bestFeature


def majorityCnt(classList):        #按分类后的类别数量排序,例:最后分为2男1女,则判定为男
    classCount = {}
    for vote in classList:
        if vote not in classCount.keys():
            classCount[vote] = 0
        classCount[vote] += 1
    sortedClassCount = sorted(
        classCount.items(), key=operator.itemgetter(1), reverse=True)
    return sortedClassCount[0][0]


def createTree(dataSet, labels):            #决策树的创建 
    classList = [example[-1] for example in dataSet]
    if classList.count(classList[0]) == len(classList):
        return classList[0]
    if len(dataSet[0]) == 1:
        return majorityCnt(classList)
    bestFeat = chooseBestFeatureToSplit(dataSet)       #选择最优特征
    bestFeatLable = labels[bestFeat]
    myTree = {bestFeatLable: {}}       #分类结果以字典形式保存 
    del(labels[bestFeat])
    featValues = [example[bestFeat]for example in dataSet]
    uniqueVals = set(featValues)
    for value in uniqueVals:
        subLabels = labels[:]
        myTree[bestFeatLable][value] = createTree(splitDataSet
                                                  (dataSet, bestFeat, value), subLabels)
    return myTree


if __name__ == "__main__":
    dataSet, labels = createDataSet1()
    print(createTree(dataSet, labels))      #输出模型结果 

输出结果为:


画出来的样子就是:


  • 1
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值