(8) pytorch之卷积conv2d

本文介绍了卷积运算的概念,包括卷积核的作用和卷积维度的含义,并详细讲解了PyTorch中的nn.Conv2d模块,用于二维卷积操作。主要参数包括输入通道数、输出通道数、卷积核尺寸、步长、填充以及分组卷积等,旨在实现特征提取。
摘要由CSDN通过智能技术生成

一、卷积运算

卷积运算:卷积核在输入信号(图像)上滑动,相应位置上进行乘加.
卷积核:又称滤波器,过滤器,可以认为是某种模式,某种特征.
卷积维度:几维的卷积核在几个维度上滑动,就是几维卷积.(我们平时说的都是2维度)
在这里插入图片描述
在这里插入图片描述
卷积过程类似于用一个模板去图像上找与它相似的区域,与卷积核模式越相似,
激活值越高,从而实现特征提取.

二、 Conv2d

nn.Conv2d()模型:功能:对多个二维信号进行二维卷积.
在这里插入图片描述
主要参数:in_channels(输入通道数)
out_channels(输出通道数,等价于卷积核个数)
kernel_size()卷积核尺寸(当为正方形时候,可以用一个数)
stride 步长
padding填充个数(用来保证输入输出图像的尺寸相同,不会降低分辨率)
dilation:空洞卷积大小
groups:分组卷积设置
bias:偏置在这里插入图片描述
输出尺寸简化版
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值