TensorBoard配置及启动过程
本文从小白角度出发,总结了TensorBoard的配置及使用过程,总结了一些踩过的坑,希望能帮助大家!
1.TensorBoard用途
简单来说,用于观测模型不同阶段的输出。在深度学习过程中,可以监控参数变化。
2.准备工作
准备工作非常重要,是踩坑的主要来源。
主要包括两个方面的确认和设置:
- python终端虚拟环境——会导致tensorboard启动指令报错
- python终端运行路径——会导致端口无图形输出
2.1 软件包安装
在pycharm中:
python软件包->搜索tensorboard->安装
运行方法:python终端,指令运行。
2.2 切换到当前虚拟环境
注意:运行TensorBoard之前,必须确保python控制台的运行环境与当前虚拟环境一致。否则会出现以下错误:
原因:当前python终端环境与项目虚拟环境不一致(我的代码当前为base环境)
解决方法:在python终端中切换到当前虚拟环境:
点击小箭头->选择“Command Prompt”->前面的PS显示为(base)即为成功
切换之后,显示如下,前面的“(base)”即为虚拟环境名称:
2.3 切换到当前项目路径
注意:一定要切换到当前项目路径,否则会出现打开tensorboard对应的端口后无法显示(踩过坑)的问题。
报错内容:
原因:python终端运行路径不正确,一定要定位到当前.py所在的文件夹,错误路径:
本文项目文件位置如下:
报错的错误路径为:
解决方式:cd到当前.py所在文件夹:
至此,准备工作已经完成,可以开始使用tensorboard了!
3.测试代码及函数
首先,我们编写一个最简单的测试代码,绘制一个"x=y"的直线:
from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")
#y = x
for i in range(100):
writer.add_scalar("y = x",i,i)
writer.close()
其中,add_scalar函数参数如下:
参数解释:
- Tag——代表的是图表的标题
- Scalar_value——Y轴
- global_step——X轴
4.运行TensorBoard
运行.py,下文开始通过TensorBoard显示。
在python终端中输入指令:
tensorboard --logdir=logs
打开端口:
显示如下:
5.指定端口打开
当需要打开多个tensorboard时,为避免冲突,可在不同端口打开:
默认是6006端口:
在6007端口打开:
tensorboard --logdir=logs --port=6007