TensorBoard配置及启动

TensorBoard配置及启动过程

本文从小白角度出发,总结了TensorBoard的配置及使用过程,总结了一些踩过的坑,希望能帮助大家!

1.TensorBoard用途

在这里插入图片描述
简单来说,用于观测模型不同阶段的输出。在深度学习过程中,可以监控参数变化。

2.准备工作

准备工作非常重要,是踩坑的主要来源。
主要包括两个方面的确认和设置:

  1. python终端虚拟环境——会导致tensorboard启动指令报错
  2. python终端运行路径——会导致端口无图形输出

2.1 软件包安装

在pycharm中:

python软件包->搜索tensorboard->安装

在这里插入图片描述
运行方法:python终端,指令运行。

2.2 切换到当前虚拟环境

注意:运行TensorBoard之前,必须确保python控制台的运行环境与当前虚拟环境一致。否则会出现以下错误:
在这里插入图片描述
原因:当前python终端环境与项目虚拟环境不一致(我的代码当前为base环境)
解决方法:在python终端中切换到当前虚拟环境:

点击小箭头->选择“Command Prompt”->前面的PS显示为(base)即为成功

在这里插入图片描述
切换之后,显示如下,前面的“(base)”即为虚拟环境名称:
在这里插入图片描述

2.3 切换到当前项目路径

注意:一定要切换到当前项目路径,否则会出现打开tensorboard对应的端口后无法显示(踩过坑)的问题。
报错内容:
在这里插入图片描述
原因:python终端运行路径不正确,一定要定位到当前.py所在的文件夹,错误路径:

本文项目文件位置如下:
在这里插入图片描述
报错的错误路径为:
在这里插入图片描述
解决方式:cd到当前.py所在文件夹:
在这里插入图片描述

在这里插入图片描述
至此,准备工作已经完成,可以开始使用tensorboard了!

3.测试代码及函数

首先,我们编写一个最简单的测试代码,绘制一个"x=y"的直线:

from torch.utils.tensorboard import SummaryWriter
writer = SummaryWriter("logs")

#y = x
for i in range(100):
    writer.add_scalar("y = x",i,i)

writer.close()

其中,add_scalar函数参数如下:
在这里插入图片描述
参数解释:

  1. Tag——代表的是图表的标题
  2. Scalar_value——Y轴
  3. global_step——X轴

4.运行TensorBoard

运行.py,下文开始通过TensorBoard显示。
在python终端中输入指令:

tensorboard --logdir=logs

在这里插入图片描述
打开端口:
在这里插入图片描述
显示如下:
在这里插入图片描述

5.指定端口打开

当需要打开多个tensorboard时,为避免冲突,可在不同端口打开:
默认是6006端口:
在这里插入图片描述

在6007端口打开:

tensorboard --logdir=logs --port=6007

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值