代码随想录算法训练营day17 | binary tree part 05

今天第一题是:654. Maximum Binary Tree

这题感觉是需要用到前序遍历,先找到binary tree的根节点,然后再分配他的左右节点。

用了递归法,代码如下:

class Solution {
    public TreeNode constructMaximumBinaryTree(int[] nums) {
        return constructMaximumBinaryTree1(nums, 0, nums.length);
    }

    public TreeNode constructMaximumBinaryTree1(int[] nums, int leftIndex, int rightIndex) {
        if (rightIndex - leftIndex < 1) {// 没有元素了
            return null;
        }
        if (rightIndex - leftIndex == 1) {// 只有一个元素
            return new TreeNode(nums[leftIndex]);
        }
        int maxIndex = leftIndex;// 最大值所在位置
        int maxVal = nums[maxIndex];// 最大值
        for (int i = leftIndex + 1; i < rightIndex; i++) {
            if (nums[i] > maxVal){
                maxVal = nums[i];
                maxIndex = i;
            }
        }
        TreeNode root = new TreeNode(maxVal);
        // 根据maxIndex划分左右子树
        root.left = constructMaximumBinaryTree1(nums, leftIndex, maxIndex);
        root.right = constructMaximumBinaryTree1(nums, maxIndex + 1, rightIndex);
        return root;
    }
}

第二题是 617. Merge Two Binary Trees

这题也是比较基础的,先用递归三部曲确定范围和参数。

递归法:

class Solution {
    // 递归
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 == null) return root1;

        root1.val += root2.val;
        root1.left = mergeTrees(root1.left,root2.left);
        root1.right = mergeTrees(root1.right,root2.right);
        return root1;
    }
}

迭代法:

class Solution {
    // 使用栈迭代
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) {
            return root2;
        }
        if (root2 == null) {
            return root1;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root2);
        stack.push(root1);
        while (!stack.isEmpty()) {
            TreeNode node1 = stack.pop();
            TreeNode node2 = stack.pop();
            node1.val += node2.val;
            if (node2.right != null && node1.right != null) {
                stack.push(node2.right);
                stack.push(node1.right);
            } else {
                if (node1.right == null) {
                    node1.right = node2.right;
                }
            }
            if (node2.left != null && node1.left != null) {
                stack.push(node2.left);
                stack.push(node1.left);
            } else {
                if (node1.left == null) {
                    node1.left = node2.left;
                }
            }
        }
        return root1;
    }
}
class Solution {
    // 使用队列迭代
    public TreeNode mergeTrees(TreeNode root1, TreeNode root2) {
        if (root1 == null) return root2;
        if (root2 ==null) return root1;
        Queue<TreeNode> queue = new LinkedList<>();
        queue.offer(root1);
        queue.offer(root2);
        while (!queue.isEmpty()) {
            TreeNode node1 = queue.poll();
            TreeNode node2 = queue.poll();
            // 此时两个节点一定不为空,val相加
            node1.val = node1.val + node2.val;
            // 如果两棵树左节点都不为空,加入队列
            if (node1.left != null && node2.left != null) {
                queue.offer(node1.left);
                queue.offer(node2.left);
            }
            // 如果两棵树右节点都不为空,加入队列
            if (node1.right != null && node2.right != null) {
                queue.offer(node1.right);
                queue.offer(node2.right);
            }
            // 若node1的左节点为空,直接赋值
            if (node1.left == null && node2.left != null) {
                node1.left = node2.left;
            }
            // 若node1的右节点为空,直接赋值
            if (node1.right == null && node2.right != null) {
                node1.right = node2.right;
            }
        }
        return root1;
    }
}

第三题:700. Search in Binary Search Tree 

二叉搜索树是一个有序树:

  • 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
  • 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
  • 它的左、右子树也分别为二叉搜索树

这就决定了,二叉搜索树,递归遍历和迭代遍历和普通二叉树都不一样。

本题,其实就是在二叉搜索树中搜索一个节点。那么我们来看看应该如何遍历。

解法如下:

class Solution {
    // 递归,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        TreeNode left = searchBST(root.left, val);
        if (left != null) {
            return left;
        }
        return searchBST(root.right, val);
    }
}

class Solution {
    // 递归,利用二叉搜索树特点,优化
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        if (val < root.val) {
            return searchBST(root.left, val);
        } else {
            return searchBST(root.right, val);
        }
    }
}

class Solution {
    // 迭代,普通二叉树
    public TreeNode searchBST(TreeNode root, int val) {
        if (root == null || root.val == val) {
            return root;
        }
        Stack<TreeNode> stack = new Stack<>();
        stack.push(root);
        while (!stack.isEmpty()) {
            TreeNode pop = stack.pop();
            if (pop.val == val) {
                return pop;
            }
            if (pop.right != null) {
                stack.push(pop.right);
            }
            if (pop.left != null) {
                stack.push(pop.left);
            }
        }
        return null;
    }
}

class Solution {
    // 迭代,利用二叉搜索树特点,优化,可以不需要栈
    public TreeNode searchBST(TreeNode root, int val) {
        while (root != null)
            if (val < root.val) root = root.left;
            else if (val > root.val) root = root.right;
            else return root;
        return null;
    }
}

第四题: 98. Validate Binary Search Trees

这一题要验证是否为BST,首先要注意BST的定义:

假设一个二叉搜索树具有如下特征:

  • 节点的左子树只包含小于当前节点的数。
  • 节点的右子树只包含大于当前节点的数。
  • 所有左子树和右子树自身必须也是二叉搜索树。

需要注意的点是 1. 我们要比较左子树所有节点都小于根节点,右子树所有节点都大于根节点。 

2. 样例中最小节点 可能是int的最小值,如果这样使用最小的int来比较也是不行的。 

解法如下:

class Solution {
    // 递归
    TreeNode max;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        // 左
        boolean left = isValidBST(root.left);
        if (!left) {
            return false;
        }
        // 中
        if (max != null && root.val <= max.val) {
            return false;
        }
        max = root;
        // 右
        boolean right = isValidBST(root.right);
        return right;
    }
}

class Solution {
    // 迭代
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        Stack<TreeNode> stack = new Stack<>();
        TreeNode pre = null;
        while (root != null || !stack.isEmpty()) {
            while (root != null) {
                stack.push(root);
                root = root.left;// 左
            }
            // 中,处理
            TreeNode pop = stack.pop();
            if (pre != null && pop.val <= pre.val) {
                return false;
            }
            pre = pop;

            root = pop.right;// 右
        }
        return true;
    }
}

// 简洁实现·递归解法
class Solution {
    public boolean isValidBST(TreeNode root) {
        return validBST(Long.MIN_VALUE, Long.MAX_VALUE, root);
    }
    boolean validBST(long lower, long upper, TreeNode root) {
        if (root == null) return true;
        if (root.val <= lower || root.val >= upper) return false;
        return validBST(lower, root.val, root.left) && validBST(root.val, upper, root.right);
    }
}
// 简洁实现·中序遍历
class Solution {
    private long prev = Long.MIN_VALUE;
    public boolean isValidBST(TreeNode root) {
        if (root == null) {
            return true;
        }
        if (!isValidBST(root.left)) {
            return false;
        }
        if (root.val <= prev) { // 不满足二叉搜索树条件
            return false;
        }
        prev = root.val;
        return isValidBST(root.right);
    }
}


 

 

 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值