不一样的等待12305
码龄8年
关注
提问 私信
  • 博客:76,223
    76,223
    总访问量
  • 69
    原创
  • 68,226
    排名
  • 39
    粉丝
  • 0
    铁粉

个人简介:放下浮躁,平心静气,踏踏实实的前行

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:中国
  • 加入CSDN时间: 2017-06-06
博客简介:

qq_39068872的博客

查看详细资料
  • 原力等级
    领奖
    当前等级
    0
    当前总分
    25
    当月
    1
个人成就
  • 获得81次点赞
  • 内容获得7次评论
  • 获得184次收藏
创作历程
  • 1篇
    2024年
  • 1篇
    2021年
  • 31篇
    2020年
  • 38篇
    2019年
  • 2篇
    2018年
成就勋章
TA的专栏
  • 代码设计
  • 目标检测
    18篇
  • java
    3篇
  • 机器学习
    8篇
  • Image Caption
    2篇
  • 数学
    1篇
  • lintcode
    3篇
  • 深度学习
    29篇
  • Linux常用指令
    1篇
  • numpy
    2篇
  • c
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

常用设计模式总结

常见的评判代码好坏的词汇:其最常用的几个评判标准:可维护性,可读性,可扩展性,灵活性,间接性,可复用性,可测试性。代码易维护:不破坏原有设计、不引入新bug的情况下,能够快速修改或者添加代码。代码的可维护性是由多因素共同作用的结果:是否符合编码规范,命名是否达意,注释是否详尽,函数长短是否合适,模块划分是否清晰,是否符合高内聚低耦合。很直观的评判:如果一段代码很容易被读懂,说明可读性好,如果读完代码后有很多疑问,那就说明有问题。代码可扩展性指的是:在不修改或者少量修改原有代码的情况下,通过扩展的方式添加
原创
发布博客 2024.08.01 ·
1371 阅读 ·
30 点赞 ·
0 评论 ·
13 收藏

清华源指定版本安装pytorch以及和torchvision的版本对应关系

使用清华源指定版本安装pytorch:python -m pip install torch==0.4.0 -i https://pypi.tuna.tsinghua.edu.cn/simplepytorch和torchvision对应关系:
原创
发布博客 2021.02.23 ·
1971 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

pytorch中的pack_padded_sequence和pad_packed_sequence用法

pack_padded_sequence是将句子按照batch优先的原则记录每个句子的词,变化为不定长tensor,方便计算损失函数。pad_packed_sequence是将pack_padded_sequence生成的结构转化为原先的结构,定长的tensor。其中test.txt的内容As they sat in a nice coffee shop, he was too nervous to say anythingand she felt uncomfortable. Suddenl
原创
发布博客 2020.09.28 ·
455 阅读 ·
1 点赞 ·
0 评论 ·
0 收藏

目标检测系列:STDN(Scale-Transferrable Object Detection)

论文链接:http://openaccess.thecvf.com/content_cvpr_2018/papers/Zhou_Scale-Transferrable_Object_Detection_CVPR_2018_paper.pdf1. Introduction本文的初衷是利用多尺度来对检测结果提升,上图是不同的多尺度方式的操作方式,图a 是最传统的one-stage方式,例如,yo...
原创
发布博客 2020.04.05 ·
780 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏

目标检测系列:SIN(Structure Inference Net)

论文链接:http://openaccess.thecvf.com/content_cvpr_2018/papers/Liu_Structure_Inference_Net_CVPR_2018_paper.pdf文章目录1. Introduction2. SIN2.1 主干网络2.2 信息传递2.3 Structure Inference3. 总结1. Introduction很多的论文都有...
原创
发布博客 2020.04.04 ·
741 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

目标检测系列:light head rcnn

论文链接:https://arxiv.org/pdf/1711.07264.pdf文章目录1. Introduction2. Light head R-CNN2.1 RCNN 子网2.2 Light head rcnn3. 实验细节4 总结1. Introduction都知道two-stage方法要比one-stage精度高,但是运行速度要慢很多,通过实验发现,faster rcnn和R-F...
原创
发布博客 2020.03.31 ·
478 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

image caption:Unsupervised image caption

论文链接:https://arxiv.org/pdf/1811.10787.pdf文章目录1. Introduction2. Unsupervised Image Caption2.1 整体网络结构2.1.1 Visual Concept Distillation2.1.2 latent space2.2 初始化3.总结1. Introduction本文提出的方法有三个目标:训练语言模...
原创
发布博客 2020.03.30 ·
437 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

机器学习系列:变分推断

1. Introduction我们已经知道概率模型可以分为,频率派的优化问题和贝叶斯派的积分问题。从贝叶斯角度来看推断,对于 x^\hat{x}x^ 这样的新样本,需要得到: p(x^∣X)=∫θp(x^,θ∣X)dθ=∫θp(θ∣X)p(x^∣θ,X)dθ p(\hat{x}|X)=\int_\theta p(\hat{x},\theta|X)d\theta=\int_\theta p(\th...
原创
发布博客 2020.03.29 ·
372 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

机器学习系列:高斯混合模型(GMM)

文章目录1. Introduction2.极大似然估计3. EM求解GMM1. Introduction为了解决高斯模型的单峰性的问题,我们引入多个高斯模型的加权平均来拟合多峰数据:p(x)=∑k=1KαkN(μk,Σk) p(x)=\sum\limits_{k=1}^K\alpha_k\mathcal{N}(\mu_k,\Sigma_k) p(x)=k=1∑K​αk​N(μk​,Σk​) ...
原创
发布博客 2020.03.28 ·
509 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习系列:期望最大(EM)算法

1. 期望最大期望最大算法的目的是解决具有隐变量的混合模型的参数估计(极大似然估计)MLE 对 p(x∣θ)p(x|\theta)p(x∣θ) 参数的估计记为:θMLE=argmaxθlog⁡p(x∣θ)\theta_{MLE}=\mathop{argmax}\limits_\theta\log p(x|\theta)θMLE​=θargmax​logp(x∣θ)。EM 算法对这个问题的解决方法...
原创
发布博客 2020.03.28 ·
337 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习系列:概率图模型

文章目录1. Introduction2. 有向图-贝叶斯网络3.无向图-马尔科夫网络(马尔科夫随机场)4 两种图的转换-道德图5 因子图1. Introduction概率图模型使用图的方式表示概率分布。为了在图中添加各种概率,首先总结一下随机变量分布的一些规则:Sum Rule:p(x1)=∫p(x1,x2)dx2Product Rule:p(x1,x2)=p(x1∣x...
原创
发布博客 2020.03.28 ·
311 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习系列:SVM

支撑向量机支撑向量机(SVM)算法在分类问题中有着重要地位,其主要思想是最大化两类之间的间隔。按照数据集的特点:线性可分问题,如之前的感知机算法处理的问题线性可分,只有一点点错误点,如感知机算法发展出来的 Pocket 算法处理的问题非线性问题,完全不可分,如在感知机问题发展出来的多层感知机和深度学习这三种情况对于 SVM 分别有下面三种处理手段:hard-margin SVM...
原创
发布博客 2020.03.28 ·
207 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习系列:降维

我们知道,解决过拟合的问题除了正则化和添加数据之外,降维就是最好的方法。降维的思路来源于维度灾难的问题,我们知道 nnn 维球的体积为: CRn CR^n CRn 那么在球体积与边长为 2R2R2R 的超立方体比值为: lim⁡n→0CRn2nRn=0 \lim\limits_{n\rightarrow0}\frac{CR^n}{2^nR^n}=0 n→0lim​2nRnCRn​=0这就是所谓的...
原创
发布博客 2020.03.25 ·
361 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目标检测系列:Mask RCNN

论文链接:http://openaccess.thecvf.com/content_ICCV_2017/papers/He_Mask_R-CNN_ICCV_2017_paper.pdf文章目录1. Introduction2. ROIAlign3. Mask rcnn1. Introduction这篇论文算是Faster rcnn的一个扩展,将faster rcnn模型用在了实例分割的任务上...
原创
发布博客 2020.03.25 ·
514 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习系列:回归问题

1. 线性分类介绍线性分类通常分为两种硬分类,我们直接输出预测观测值的类别,模型代表:线性判别分析感知机软分类,生成不同类别的概率,这类算法分为两种a. 生成式:* 高斯判别分析* 朴素Bayesb.判别式:* Logistic 回归这里解释一下什么是判别式,什么是生成式。现在假设我们要计算p(y∣x)p(y|x)p(y∣x)生成式:根据贝叶斯定理先计算参数后验概...
原创
发布博客 2020.03.24 ·
224 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

机器学习系列:线性回归

1. 基本的线性回归假设数据集为: D=(x1,y1),(x2,y2),⋯ ,(xN,yN) \mathcal{D}={(x_1, y_1),(x_2, y_2),\cdots,(x_N, y_N)} D=(x1​,y1​),(x2​,y2​),⋯,(xN​,yN​)要注意,这里的xix_ixi​表示的是(xi1,xi2,⋯ ,xim)(x_{i1},x_{i2},\cdots,x_{im})(...
原创
发布博客 2020.03.24 ·
154 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目标检测系列:couplenet

论文链接:CoupleNet: Coupling Global Structure with Local Parts for Object Detection文章目录1.Introduction2.CoupleNet2.1网络结构3.实验总结1.Introduction本文算是RFCN的一个改进方法,RFCN提出在目标检测中引入位置敏感得分图,去除了ROIPooling后不共享的部分,在速度...
原创
发布博客 2020.03.23 ·
651 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

目标检测系列:DCN

论文链接:Deformable Convolutional Networks文章目录1.Introduction2.Deformable Convolution Networks1.Introduction目标检测当中数据有一个问题,图片中物体的尺寸,姿势,方向都是不同的,这对检测的结果有很大的影响,这个问题通常有两个解决办法:1. 通过数据增强,扩大数据量,只要数据量足够大,训练好的模型可...
原创
发布博客 2020.03.22 ·
1307 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

目标检测系列:PVANET

论文链接:https://arxiv.xilesou.top/pdf/1608.08021.pdf文章目录1. Introduction2. 网络设计2.1 C.ReLU2.2 Inception结构2.3 多尺度融合3 整个特征提取网络结构3. 结论1. Introduction首先明确本文提出的目的,改进提取特征的网络,加速前馈网络的运行速度。本文进行目标检测和faster rcnn的...
原创
发布博客 2020.03.19 ·
395 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

目标检测系列:R-FCN

论文链接:https://arxiv.org/pdf/1605.06409.pdf文章目录1. Introduction2 RFCN方法3 总结:1. Introduction明确本文提出的目的,首先回顾一下Faster rcnn,如下图,可以将faster rcnn分为三部分网络部分,用来对图像提取特征,与region无关第二部分是RPN对anchors进行操作,需要映射到区域第三...
原创
发布博客 2020.03.18 ·
360 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多