numpy一些常用的函数操作

  1. numpy.concatenate((a1, a2, …), axis=0)

    numpy.concatenate((a1, a2, ...), axis=0) 
    

    Join a sequence of arrays along an existing axis.(按轴axis连接array组成一个新的array)
    The arrays must have the same shape, except in the dimension corresponding to axis.
    这个函数的作用是进行数组链接,axis为链接的方向,要注意,两个连接数组可以有一个维度不同,而这个维度就是连接维度.axis 默认为0

>>> a = np.array([[1, 2], [3, 4]])
>>> b = np.array([[5, 6]])               b是一个二维array
>>> np.concatenate((a, b), axis=0)
array([[1, 2],
       [3, 4],
       [5, 6]])
>>> np.concatenate((a, b.T), axis=1)
array([[1, 2, 5],
       [3, 4, 6]])


>>> b = np.array([[5,6]])         可以看出b是二维的不是一维的
>>> b.shape
(1, 2)
>>> b = np.array([5,6])
>>> b.shape
(2,)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值