PAT 1018 Public Bike Management (30 分) -甲级

1018 Public Bike Management (30 分)

There is a public bike service in Hangzhou City which provides great convenience to the tourists from all over the world. One may rent a bike at any station and return it to any other stations in the city.

The Public Bike Management Center (PBMC) keeps monitoring the real-time capacity of all the stations. A station is said to be in perfect condition if it is exactly half-full. If a station is full or empty, PBMC will collect or send bikes to adjust the condition of that station to perfect. And more, all the stations on the way will be adjusted as well.

When a problem station is reported, PBMC will always choose the shortest path to reach that station. If there are more than one shortest path, the one that requires the least number of bikes sent from PBMC will be chosen.

img

The above figure illustrates an example. The stations are represented by vertices and the roads correspond to the edges. The number on an edge is the time taken to reach one end station from another. The number written inside a vertex S is the current number of bikes stored at S. Given that the maximum capacity of each station is 10. To solve the problem at S3, we have 2 different shortest paths:

  1. PBMC -> S1 -> S3. In this case, 4 bikes must be sent from PBMC, because we can collect 1 bike from S1 and then take 5 bikes to S3, so that both stations will be in perfect conditions.
  2. PBMC -> S2 -> S3. This path requires the same time as path 1, but only 3 bikes sent from PBMC and hence is the one that will be chosen.

Input Specification:

Each input file contains one test case. For each case, the first line contains 4 numbers: Cma**x (≤100), always an even number, is the maximum capacity of each station; N (≤500), the total number of stations; S**p, the index of the problem station (the stations are numbered from 1 to N, and PBMC is represented by the vertex 0); and M, the number of roads. The second line contains N non-negative numbers C**i (i=1,⋯,N) where each C**i is the current number of bikes at S**i respectively. Then M lines follow, each contains 3 numbers: S**i, S**j, and Tij which describe the time Tij taken to move betwen stations S**iand S**j. All the numbers in a line are separated by a space.

Output Specification:

For each test case, print your results in one line. First output the number of bikes that PBMC must send. Then after one space, output the path in the format: 0−>S1−>⋯−>S**p. Finally after another space, output the number of bikes that we must take back to PBMC after the condition of S**p is adjusted to perfect.

Note that if such a path is not unique, output the one that requires minimum number of bikes that we must take back to PBMC. The judge’s data guarantee that such a path is unique.

Sample Input:

10 3 3 5
6 7 0
0 1 1
0 2 1
0 3 3
1 3 1
2 3 1

Sample Output:

3 0->2->3 0
#include <stdio.h>
#include <algorithm>
#include <vector>

using namespace std;

const int MAXV = 1010;
const int INF = 0x3fffffff;
int Cmax, N, Sp, M, G[MAXV][MAXV], d[MAXV];
int vis[MAXV] = {0}, C[MAXV] = {0};
int minNeed = INF, minBack = INF;
vector<int> pre[MAXV], tempPath, path;

void Dijkstra() {
    fill(d, d + MAXV, INF);
    d[0] = 0;
    for (int i = 0; i < N + 1; ++i) {
        int u = -1, MIN = INF;
        for (int j = 0; j <= N; ++j) {
            if (vis[j] == 0 && d[j] < MIN) {
                u = j;
                MIN = d[j];
            }
        }
        if (u == -1) return;
        vis[u] = 1;
        for (int v = 1; v <= N; ++v) {
            if (vis[v] == 0 && G[u][v] != INF && d[u] + G[u][v] < d[v]) {
                d[v] = d[u] + G[u][v];
                pre[v].clear();
                pre[v].push_back(u);
            } else if (vis[v] == 0 && G[u][v] != INF && d[u] + G[u][v] == d[v]) {
                pre[v].push_back(u);
            }
        }
    }
}

void DFS(int v) {
    if (v == 0) {
        int need = 0, remain = 0;
        for (int i = tempPath.size() - 1; i >= 0; --i) {
            if (C[tempPath[i]] + remain >= Cmax / 2) {
                remain = remain + C[tempPath[i]] - Cmax / 2;
            } else {
                need += Cmax / 2 - (C[tempPath[i]] + remain);
                remain = 0;
            }
        }
        if (need < minNeed) {
            path = tempPath;
            minNeed = need;
            minBack = remain;
        } else if (need == minNeed && remain < minBack) {
            minBack = remain;
            path = tempPath;
        }
        return;
    }
    tempPath.push_back(v);
    for (int i = 0; i < pre[v].size(); ++i) {
        DFS(pre[v][i]);
    }
    tempPath.pop_back();
}

int main() {
    scanf("%d%d%d%d", &Cmax, &N, &Sp, &M);
    for (int i = 1; i <= N; ++i) {
        scanf("%d", C + i);
    }
    fill(G[0], G[0] + MAXV * MAXV, INF);
    for (int j = 0; j < M; ++j) {
        int Si, Sj, Tij;
        scanf("%d%d%d", &Si, &Sj, &Tij);
        G[Si][Sj] = Tij;
        G[Sj][Si] = Tij;
    }
    Dijkstra();
    DFS(Sp);
    printf("%d 0", minNeed);
    for (int k = path.size() - 1; k >= 0; --k) {
        printf("->%d", path[k]);
    }
    printf(" %d", minBack);
    return 0;
}
已标记关键词 清除标记
相关推荐
【为什么还需要学习C++?】 你是否接触很多语言,但从来没有了解过编程语言的本质? 你是否想成为一名资深开发人员,想开发别人做不了的高性能程序? 你是否经常想要窥探大型企业级开发工程的思路,但苦于没有基础只能望洋兴叹?   那么C++就是你个人能力提升,职业之路进阶的不二之选。 【课程特色】 1.课程共19大章节,239课时内容,涵盖数据结构、函数、类、指针、标准库全部知识体系。 2.带你从知识与思想的层面从0构建C++知识框架,析大型项目实践思路,为你打下坚实的基础。 3.李宁老师结合4大国外顶级C++著作的精华为大家推出的《征服C++11》课程。 【学完后我将达到什么水平?】 1.对C++的各个知识能够熟练配置、开发、部署; 2.吊打一切关于C++的笔试面试题; 3.面向物联网的“嵌入式”和面向大型化的“布式”开发,掌握职业钥匙,把握行业先机。 【面向人群】 1.希望一站式快速入门的C++初学者; 2.希望快速学习 C++、掌握编程要义、修炼内功的开发者; 3.有志于挑战更高级的开发项目,成为资深开发的工程师。 【课程设计】 本课程包含3大模块 基础篇 本篇主要讲解c++的基础概念,包含数据类型、运算符等基本语法,数组、指针、字符串等基本词法,循环、函数、类等基本句法等。 进阶篇 本篇主要讲解编程中常用的一些技能,包含类的高级技术、类的继承、编译链接和命名空间等。 提升篇: 本篇可以帮助学员更加高效的进行c++开发,其中包含类型转换、文件操作、异常处理、代码重用等内容。
©️2020 CSDN 皮肤主题: 大白 设计师:CSDN官方博客 返回首页