leetcode 669. 修剪二叉搜索树
题目链接:修剪二叉搜索树
递归法:
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int low, int high) {
if (root == NULL ) return NULL; //空节点直接返回空节点
if (root->val < low) {
TreeNode* right = trimBST(root->right, low, high); //递归右子树,寻找符合区间[low, high]的节点,返回右子树符合条件的头节点
return right;
}
if (root->val > high) {
TreeNode* left = trimBST(root->left, low, high); //递归左子树,寻找符合区间[low, high]的节点,返回左子树符合条件的头节点
return left;
}
root->left = trimBST(root->left, low, high); // root->left接入符合条件的左孩子
root->right = trimBST(root->right, low, high); // root->right接入符合条件的右孩子
return root;
}
};
迭代法:
在剪枝的时候,分为下三步:
- 将root移动到[L, R] 范围内,注意是左闭右闭区间
- 剪枝左子树
- 剪枝右子树
class Solution {
public:
TreeNode* trimBST(TreeNode* root, int L, int R) {
if (root==NULL) return NULL;
// 处理头结点,让root移动到[L, R] 范围内,注意是左闭右闭
while (root != NULL && (root->val < L || root->val > R)) {
if (root->val < L) root = root->right; // 小于L往右走
else root = root->left; // 大于R往左走
}
TreeNode *cur = root;
// 此时root已经在[L, R] 范围内,处理左孩子元素小于L的情况
while (cur != NULL) {
while (cur->left && cur->left->val < L) {
cur->left = cur->left->right;
}
cur = cur->left;
}
cur = root;
// 此时root已经在[L, R] 范围内,处理右孩子大于R的情况
while (cur != NULL) {
while (cur->right && cur->right->val > R) {
cur->right = cur->right->left;
}
cur = cur->right;
}
return root;
}
};
leetcode 108. 将有序数组转换为二叉搜索树
题目链接:将有序数组转换为二叉搜索树
本质就是寻找分割点,分割点作为当前节点,然后递归左区间和右区间。
分割点就是数组中间位置的节点,如果遇到要处理的数组是偶数,中间位置两个数,固定取左边的数。
递归法:
class Solution {
private:
TreeNode* traversal(vector<int>& nums, int left, int right) //递归的区间设定为左闭右闭区间
{
if (left > right) return NULL; //左闭右闭区间,所以终止条件是left>right
int mid = left + ((right - left) / 2); //包含了两个中间位置值,取左边的数的逻辑
TreeNode* root = new TreeNode(nums[mid]);
root->left = traversal(nums, left, mid - 1);
root->right = traversal(nums, mid + 1, right);
return root;
}
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
TreeNode* root = traversal(nums, 0, nums.size() - 1); //左闭右闭区间
return root;
}
};
迭代法:
迭代法通过三个队列来模拟,一个队列放遍历的节点,一个队列放左区间下标,一个队列放右区间下标。
class Solution {
public:
TreeNode* sortedArrayToBST(vector<int>& nums) {
if (nums.size() == 0) return NULL;
TreeNode* root = new TreeNode(0); // 初始根节点
queue<TreeNode*> nodeQue; // 放遍历的节点
queue<int> leftQue; // 保存左区间下标
queue<int> rightQue; // 保存右区间下标
nodeQue.push(root); // 根节点入队列
leftQue.push(0); // 0为左区间下标初始位置
rightQue.push(nums.size() - 1); // nums.size() - 1为右区间下标初始位置
while (!nodeQue.empty()) {
TreeNode* curNode = nodeQue.front();
nodeQue.pop();
int left = leftQue.front(); leftQue.pop();
int right = rightQue.front(); rightQue.pop();
int mid = left + ((right - left) / 2);
curNode->val = nums[mid]; // 将mid对应的元素给中间节点
if (left <= mid - 1) { // 处理左区间
curNode->left = new TreeNode(0);
nodeQue.push(curNode->left);
leftQue.push(left);
rightQue.push(mid - 1);
}
if (right >= mid + 1) { // 处理右区间
curNode->right = new TreeNode(0);
nodeQue.push(curNode->right);
leftQue.push(mid + 1);
rightQue.push(right);
}
}
return root;
}
};
leetcode 538. 把二叉搜索树转换为累加树
题目链接:二叉搜索树转换为累加树
二叉搜索树相当于从小到大排序的有序数组,将数组从后到前累加即可。
所以在二叉搜索树中累加的顺序就是右中左,所以通过反中序遍历二叉树,然后顺序累加及可。
递归法:
不需要递归函数的返回值,要遍历整棵树;定义一个int型的全局变量pre,用来保存cur节点的前一个节点的数值。
class Solution {
private:
int pre = 0; // 记录前一个节点的数值
void traversal(TreeNode* cur) { // 右中左遍历
if (cur == NULL) return;
traversal(cur->right);
cur->val += pre;
pre = cur->val;
traversal(cur->left);
}
public:
TreeNode* convertBST(TreeNode* root) {
pre = 0;
traversal(root);
return root;
}
};
迭代法:
class Solution {
private:
int pre; // 记录前一个节点的数值
void traversal(TreeNode* root) {
stack<TreeNode*> st;
TreeNode* cur = root;
while (cur != NULL || !st.empty()) {
if (cur != NULL) {
st.push(cur);
cur = cur->right; // 右
} else {
cur = st.top(); // 中
st.pop();
cur->val += pre;
pre = cur->val;
cur = cur->left; // 左
}
}
}
public:
TreeNode* convertBST(TreeNode* root) {
pre = 0;
traversal(root);
return root;
}
};