代码随想录训练营第二十九天——递增子序列,全排列,全排列||

leetcode 491. 递增子序列

题目链接:递增子序列
本题求自增子序列,是不能对原数组进行排序的,排完序的数组都是自增子序列了,所以不能使用之前的used数组去重逻辑

版本一:

使用set对每一层去重。

class Solution {
private:
    vector<vector<int>> res;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1) {
            res.push_back(path);
            // 注意这里不要加return,要取树上的节点
        }
        unordered_set<int> uset; // 使用set对本层元素进行去重
        for (int i = startIndex; i < nums.size(); i++) {
            if ((!path.empty() && nums[i] < path.back())  //当前元素比path里最后一个元素小就跳过
                    || uset.find(nums[i]) != uset.end()) //使用set对本层去重,发现重复元素跳过
            {
                    continue;
            }
            uset.insert(nums[i]); //记录元素在本层用过了,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        res.clear();
        path.clear();
        backtracking(nums, 0);
        return res;
    }
};

版本二:

使用数组代替unordered_set,效率要高了很多。

class Solution {
private:
    vector<vector<int>> res;
    vector<int> path;
    void backtracking(vector<int>& nums, int startIndex) {
        if (path.size() > 1) {
            res.push_back(path);
        }
        int used[201] = {0}; //使用数组进行去重操作,题目中数值范围[-100, 100]
        for (int i = startIndex; i < nums.size(); i++) {
            if ((!path.empty() && nums[i] < path.back())
                    || used[nums[i] + 100] == 1) {
                    continue;
            }
            used[nums[i] + 100] = 1; // 记录元素在本层用过了,本层后面不能再用了
            path.push_back(nums[i]);
            backtracking(nums, i + 1);
            path.pop_back();
        }
    }
public:
    vector<vector<int>> findSubsequences(vector<int>& nums) {
        result.clear();
        path.clear();
        backtracking(nums, 0);
        return res;
    }
};

leetcode 46. 全排列

题目链接:全排列

  1. 排列是有序的,例如 [1,2] 和 [2,1] 是两个集合。处理排列问题就不能使用startIndex了。
  2. 使用used数组记录哪些元素使用过了,因为一个排列里一个元素只能使用一次。
  3. 排列问题找到了叶子节点则结束,收集叶子节点的值。
    (组合问题和排列问题是在树形结构的叶子节点上收集结果,而子集问题是取树上所有节点的结果。)
class Solution {
public:
    vector<vector<int>> res;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size())  //找到叶子节点
        {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++)  //循环都是从0开始的
        {
            if (used[i] == true) continue; //path里已经收录的元素,直接跳过
            used[i] = true;
            path.push_back(nums[i]);
            backtracking(nums, used);
            path.pop_back();
            used[i] = false;
        }
    }
    vector<vector<int>> permute(vector<int>& nums) {
        result.clear();
        path.clear();
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

leetcode 47. 全排列||

题目链接:全排列||
本题涉及到去重,去重之前要对元素进行排序,方便通过相邻节点判断是否重复使用了。

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking (vector<int>& nums, vector<bool>& used) {
        // 此时说明找到了一组
        if (path.size() == nums.size()) {
            result.push_back(path);
            return;
        }
        for (int i = 0; i < nums.size(); i++) {
            // used[i - 1] == true,说明同一树枝nums[i - 1]使用过
            // used[i - 1] == false,说明同一树层nums[i - 1]使用过
            // 如果同一树层nums[i - 1]使用过则直接跳过
            if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
                continue;
            }
            if (used[i] == false) {
                used[i] = true;
                path.push_back(nums[i]);
                backtracking(nums, used);
                path.pop_back();
                used[i] = false;
            }
        }
    }
public:
    vector<vector<int>> permuteUnique(vector<int>& nums) {
        result.clear();
        path.clear();
        sort(nums.begin(), nums.end()); // 排序
        vector<bool> used(nums.size(), false);
        backtracking(nums, used);
        return result;
    }
};

本题去重代码:树层去重

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == false) {
    continue;
}

使用如下代码也是可以的:树枝去重

if (i > 0 && nums[i] == nums[i - 1] && used[i - 1] == true) {
    continue;
}

排列问题树层去重和树枝去重都可以,但是树层去重效率更高,优先选择树层去重。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值