leetcode 332.重新安排行程
题目链接:重新安排行程
- 本题中出发机场和到达机场是会重复的,搜索的过程没及时删除目的机场就会出现死循环。
- 本题使用
unordered_map<string, map<string, int>> targets:unordered_map<出发机场, map<到达机场, 航班次数>> targets
记录映射关系,通过对航班次数的判断,如果“航班次数”大于零,说明目的地还可以飞,如果“航班次数”等于零说明目的地不能飞了。 - 返回值使用bool类型,因为只需要找到一个行程就返回,就是在树形结构中唯一的一条通向叶子节点的路线。
- 回溯遍历的终止条件是:遇到的机场个数,如果达到了(航班数量+1),那么我们就找到了一个行程,把所有航班串在一起了
class Solution {
private:
// unordered_map<出发机场, map<到达机场, 航班次数>> targets
unordered_map<string, map<string, int>> targets;
bool backtracking(int ticketNum, vector<string>& result) {
if (result.size() == ticketNum + 1) {
return true;
}
for (pair<const string, int>& target : targets[result[result.size() - 1]]) {
if (target.second > 0 ) { // 记录到达机场是否飞过了
result.push_back(target.first);
target.second--;
if (backtracking(ticketNum, result)) return true;
result.pop_back();
target.second++;
}
}
return false;
}
public:
vector<string> findItinerary(vector<vector<string>>& tickets) {
targets.clear();
vector<string> result;
for (const vector<string>& vec : tickets) {
targets[vec[0]][vec[1]]++; // 记录映射关系
}
result.push_back("JFK"); // 起始机场
backtracking(tickets.size(), result);
return result;
}
};
leetcode 51. N皇后
题目链接:N皇后
N皇后的约束条件如下:
- 不能同行
- 不能同列
- 不能同斜线(45度和135度角)
下图一3*3棋盘位列为例,抽象为一棵树:
- 二维矩阵中矩阵的高就是树的高度,矩阵的宽就是树形结构中每一个节点的宽度。
- 约束条件:回溯搜索这棵树,搜索到了树的叶子节点,说明找到了皇后的合理位置。
class Solution {
private:
vector<vector<string>> res;
// n 为输入的棋盘大小
// row 是当前递归到棋盘的第几行了
void backtracking(int n, int row, vector<string>& chess)
{
if (row == n) //终止条件:到达叶子节点。
{
result.push_back(chess);
return;
}
for (int col = 0; col < n; col++) {
if (isValid(row, col, chess, n)) { // 验证合法就可以放
chess[row][col] = 'Q'; // 放置皇后
backtracking(n, row + 1, chess);
chess[row][col] = '.'; // 回溯,撤销皇后
}
}
}
bool isValid(int row, int col, vector<string>& chess, int n) //这里不需要对同一行作检查,因为回溯for循环里每一行只有一个元素,所以不用去重。
{
// 检查列
for (int i = 0; i < row; i++)
{
if (chess[i][col] == 'Q')
{
return false;
}
}
// 检查 45度角是否有皇后
for (int i = row - 1, j = col - 1; i >=0 && j >= 0; i--, j--)
{
if (chess[i][j] == 'Q') {
return false;
}
}
// 检查 135度角是否有皇后
for(int i = row - 1, j = col + 1; i >= 0 && j < n; i--, j++)
{
if (chess[i][j] == 'Q') {
return false;
}
}
return true;
}
public:
vector<vector<string>> solveNQueens(int n)
{
result.clear();
std::vector<std::string> chess(n, std::string(n, '.'));
backtracking(n, 0, chess);
return res;
}
};
leetcode 37. 解数独
题目链接:解数独
- 本题的回溯搜索法需要作二维递归,一个for循环遍历棋盘的行,一个for循环遍历棋盘的列,一行一列确定下来之后,递归遍历这个位置放9个数字的可能性。
- 递归函数的返回值需要是bool类型,因为解数独找到一个符合的条件(就在树的叶子节点上)立刻就返回,相当于找从根节点到叶子节点一条唯一路径。
- 递归不用终止条件,解数独是要遍历整个树形结构寻找可能的叶子节点就立刻返回。
- 判断棋盘是否合法有如下三个维度:同行是否重复;同列是否重复;9宫格里是否重复
class Solution {
private:
bool backtracking(vector<vector<char>>& board) {
for (int i = 0; i < board.size(); i++) { // 遍历行
for (int j = 0; j < board[0].size(); j++) { // 遍历列
if (board[i][j] == '.') {
for (char k = '1'; k <= '9'; k++) { // (i, j) 这个位置放k是否合适
if (isValid(i, j, k, board)) {
board[i][j] = k; // 放置k
if (backtracking(board)) return true; // 如果找到合适一组立刻返回
board[i][j] = '.'; // 回溯,撤销k
}
}
return false; // 9个数都试完了,都不行,那么就返回false。通过这里保证不会陷入无限循环
}
}
}
return true; // 遍历完没有返回false,说明找到了合适棋盘位置了
}
bool isValid(int row, int col, char val, vector<vector<char>>& board) {
for (int i = 0; i < 9; i++) { // 判断行里是否重复
if (board[row][i] == val) {
return false;
}
}
for (int j = 0; j < 9; j++) { // 判断列里是否重复
if (board[j][col] == val) {
return false;
}
}
int startRow = (row / 3) * 3;
int startCol = (col / 3) * 3;
for (int i = startRow; i < startRow + 3; i++) { // 判断9方格里是否重复
for (int j = startCol; j < startCol + 3; j++) {
if (board[i][j] == val ) {
return false;
}
}
}
return true;
}
public:
void solveSudoku(vector<vector<char>>& board) {
backtracking(board);
}
};