leetcode 435. 无重叠区间
题目链接:无重叠区间
方法一:按右边界排序
按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数。此时问题转化为求非交叉区间的最大个数。
版本一:
class Solution {
public:
// 按照区间右边界排序
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[1] < b[1];
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int count = 1; // 记录非交叉区间的个数
int end = intervals[0][1]; // 记录区间分割点
for (int i = 1; i < intervals.size(); i++) {
if (end <= intervals[i][0]) {
end = intervals[i][1];
count++;
}
}
return intervals.size() - count;
}
};
时间复杂度:O(nlog n) ,考虑快排
空间复杂度:O(n),考虑快排,最差情况(倒序),需要n次递归调用。因此需要O(n)的栈空间
版本二:
借鉴 leetcode 452. 用最少数量的箭引爆气球的方法,弓箭的数量就相当于是非交叉区间的数量,只要把判断条件加个等号,然后用总区间数减去弓箭数量 就是要移除的区间数量
class Solution {
public:
// 按照区间右边界排序
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[1] < b[1]; // 右边界排序
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int res = 1; // points不为空至少需要一支箭
for (int i = 1; i < intervals.size(); i++) {
if (intervals[i][0] >= intervals[i - 1][1]) {
res++; // 需要一支箭
}
else { // 气球i和气球i-1挨着
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); //更新重叠气球最小右边界
}
}
return intervals.size() - res;
}
};
方法二:按左边界排序
版本一:
左边界排序直接求重叠的区间
class Solution {
public:
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[0] < b[0]; // 改为左边界排序
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int count = 0; // 注意这里从0开始,因为是记录重叠区间
int end = intervals[0][1]; // 记录区间分割点
for (int i = 1; i < intervals.size(); i++) {
if (intervals[i][0] >= end) end = intervals[i][1]; // 无重叠的情况
else { // 重叠情况
end = min(end, intervals[i][1]);
count++;
}
}
return count;
}
};
版本二:
借鉴 leetcode 452. 用最少数量的箭引爆气球的方法,原理和方法一的版本二原理一致。
class Solution {
public:
// 按照区间左边界排序
static bool cmp (const vector<int>& a, const vector<int>& b) {
return a[0] < b[0]; // 左边界排序
}
int eraseOverlapIntervals(vector<vector<int>>& intervals) {
if (intervals.size() == 0) return 0;
sort(intervals.begin(), intervals.end(), cmp);
int res = 1; // points 不为空至少需要一支箭
for (int i = 1; i < intervals.size(); i++) {
if (intervals[i][0] >= intervals[i - 1][1]) {
res++; // 需要一支箭
}
else { // 气球i和气球i-1挨着
intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
}
}
return intervals.size() - res;
}
};
leetcode 763. 划分字母区间
题目链接:划分字母区间
在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了
算法分为两步:
- 统计每一个字符最后出现的位置。
- 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等,则找到了分割点。
class Solution {
public:
vector<int> partitionLabels(string S) {
int hash[27] = {0}; //i为字符,hash[i]为字符出现的最后位置
for (int i = 0; i < S.size(); i++) //统计每一个字符最后出现的位置
{
hash[S[i] - 'a'] = i;
}
vector<int> res;
int left = 0;
int right = 0;
for (int i = 0; i < S.size(); i++) {
right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
if (i == right) {
res.push_back(right - left + 1);
left = i + 1;
}
}
return res;
}
};
时间复杂度:O(n)
空间复杂度:O(1),hash数组是固定大小的。
leetcode 56. 合并区间
题目链接:合并区间
左区间排序和右区间排序都可以。
class Solution {
public:
vector<vector<int>> merge(vector<vector<int>>& intervals)
{
vector<vector<int>> res;
if (intervals.size() == 0) return res; //区间集合为空直接返回
//排序的参数使用了lambda表达式,采用左区间排序
sort(intervals.begin(), intervals.end(), [](const vector<int>& a, const vector<int>& b){return a[0] < b[0];});
//第一个区间就可以放进结果集里,后面如果重叠,在res上直接合并
res.push_back(intervals[0]);
for (int i = 1; i < intervals.size(); i++)
{
if (res.back()[1] >= intervals[i][0]) //发现重叠区间,合并区间,只更新右边界,因为result.back()的左边界一定是最小值,因为按照左边界排序的
{
res.back()[1] = max(res.back()[1], intervals[i][1]);
}
else
{
res.push_back(intervals[i]); //区间不重叠
}
}
return res;
}
};
时间复杂度: O(nlogn)
空间复杂度: O(logn),排序需要的空间开销