代码随想录第五十五天——判断子序列,不同的子序列

leetcode 392. 判断子序列

题目链接:判断子序列

  1. 确定dp数组及下标的含义
    dp[i][j]:以下标i-1为结尾的字符串s,和以下标j-1为结尾的字符串t,相同子序列长度为dp[i][j]
  2. 确定递推公式
    分为两种情况:s[i - 1] 与t[j - 1]相同,s[i - 1] 与 t[j - 1]不相同
    (1)s[i - 1] 与 t[j - 1]相同:找到一个相同字符,dp[i][j] = dp[i - 1][j - 1] + 1
    (2)s[i - 1] 与 t[j - 1]不相同:此时相当于t要删除元素,t如果把t[j - 1]删除,那么dp[i][j] 的数值是看s[i - 1]与 t[j - 2]的比较结果, dp[i][j] = dp[i][j - 1]

本题与 leetcode 1143.最长公共子序列 的区别是如果删元素一定是字符串t,而 leetcode 1143.最长公共子序列 是两个字符串都可以删元素。

  1. dp数组初始化
vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
  1. 确定遍历顺序
    从前到后,从上到下
    在这里插入图片描述
    如果dp[s.size()][ t.size()] 与字符串 s 的长度相同说明 s 与 t 的最长相同子序列就是s,则 s 就是 t 的子序列。
class Solution {
public:
    bool isSubsequence(string s, string t) {
        vector<vector<int>> dp(s.size() + 1, vector<int>(t.size() + 1, 0));
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) dp[i][j] = dp[i - 1][j - 1] + 1;
                else dp[i][j] = dp[i][j - 1];
            }
        }
        if (dp[s.size()][t.size()] == s.size()) return true;
        return false;
    }
};

时间复杂度:O(n × m)
空间复杂度:O(n × m)

leetcode 115. 不同的子序列

题目链接:不同的子序列

  1. 确定dp数组及下标的含义
    dp[i][j]:以i-1为结尾的s子序列中出现以j-1为结尾的t的个数为dp[i][j]
  2. 确定递推公式
    分析两种情况:s[i-1]与t[j-1]相等;s[i-1]与t[j-1]不相等
    (1)当s[i - 1] 与 t[j - 1]相等时:分为两部分,一部分是用s[i - 1]来匹配,个数为dp[i - 1][j - 1];一部分是不用s[i - 1]来匹配,个数为dp[i - 1][j],则dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j]
    (2)当s[i - 1] 与 t[j - 1]不相等时:dp[i][j]只有一部分组成,不用s[i - 1]来匹配(模拟s种删除元素),则dp[i][j] = dp[i - 1][j]
  3. dp数组初始化
vector<vector<long long>> dp(s.size() + 1, vector<long long>(t.size() + 1));
for (int i = 0; i <= s.size(); i++) dp[i][0] = 1;
for (int j = 1; j <= t.size(); j++) dp[0][j] = 0;
  1. 确定遍历顺序
    dp[i][j]都是根据左上方和正上方推出:
    在这里插入图片描述
    所以遍历顺序是从上到下,从左到右
class Solution {
public:
    int numDistinct(string s, string t) {
        vector<vector<uint64_t>> dp(s.size() + 1, vector<uint64_t>(t.size() + 1));
        for (int i = 0; i < s.size(); i++) dp[i][0] = 1;
        for (int j = 1; j < t.size(); j++) dp[0][j] = 0;
        for (int i = 1; i <= s.size(); i++) {
            for (int j = 1; j <= t.size(); j++) {
                if (s[i - 1] == t[j - 1]) {
                    dp[i][j] = dp[i - 1][j - 1] + dp[i - 1][j];
                } else {
                    dp[i][j] = dp[i - 1][j];
                }
            }
        }
        return dp[s.size()][t.size()];
    }
};

时间复杂度: O(n * m)
空间复杂度: O(n * m)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值