天平平衡问题

Description

Eva has a balance with 20 poises. The weights of the poises are 1, 3, 9, 27,...,3^19. Eva asserts that she has a way to measure any object whose weight is an integer from 1 to (3^20-1)/2. Assuming that Eva has placed an object with the weight in this range on the left tray of the balance, your task is to place the proper poises on the proper trays so as to weigh the object out.

Input

The first line is an integer T (1 <= T <= 20), which shows the number of the test cases. Each of the following T lines contains an integer W (1 <= W <= (3^20-1)/2), expressing the weight of an object.

Output

For each test case print a line, showing the weights of the poises on the left tray and the right tray. Use a space to separate the left tray and the right tray. The poises on the same tray are arranged in the increasing order, and a comma separates every two of them. If there is no poise on the tray, output "empty".

Sample Input

3
9
5
20
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 这是一个天平平衡问题,题目给出了一个天平,左右两端共有n个挂钩,有m个不同质量的钩码,需要求出将钩码全部挂到钩子上使天平平衡的方法的总数。 为了解决这个问题,可以设计一个动态规划算法。具体来说,可以定义一个二维数组dp[i][j],其中i表示当前处理的钩码编号,j表示当前天平左侧挂钩的数量减去右侧挂钩的数量。 初始状态为dp[][]=1,表示没有钩码时天平已经平衡。然后,对于每个钩码,可以选择挂在左侧、右侧或不挂,分别对应状态转移方程: dp[i][j] = dp[i-1][j] + dp[i-1][j+1] + dp[i-1][j-1] 其中dp[i-1][j]表示不挂当前钩码,dp[i-1][j+1]表示挂在右侧,dp[i-1][j-1]表示挂在左侧。最终的答案为dp[m][],表示所有钩码都挂上后天平平衡的方案数。 这个算法的时间复杂度为O(mn),空间复杂度也为O(mn)。可以通过优化空间复杂度来进一步提高效率,例如只使用一维数组来存储状态。 ### 回答2: 一、问题分析 题目告知了天平的左右两端共有n个挂钩,且有m个不同质量的钩码。为了让天平平衡,需要将这些钩码全部挂到钩子上。由于钩码的重量不同,挂在不同的挂钩上可能会使得天平失去平衡。因此,需要找出将钩码全部挂到挂钩上使天平平衡的方法的总数。 二、解法探讨 1. 状态定义 对于这个问题,可以考虑使用动态规划的方法进行解决。首先需要定义状态。设f(i,j)为挂了前i个钩码,天平左右两端重量相等的放置方案数。其中i表示当前钩码编号,j表示左半边挂钩子的总重量。 2. 状态转移方程 根据状态定义,可以得到状态转移方程: (1)当第i个钩码被挂在左边,则状态转移为: f(i,j)=f(i-1,j-w[i]) 其中w[i]表示第i个钩码的重量。 (2)当第i个钩码被挂在右边,则状态转移为: f(i,j)=f(i-1,j+w[i]) (3)当第i个钩码不挂在天平上,则状态转移为: f(i,j)=f(i-1,j) 3. 初始状态 (1)f(0,0)=1,表示没有钩码的时候天平已经平衡。 (2)对于任意的j,初始状态为f(0,j)=0,表示没有钩码的时候天平两边的重量不可能相等。 4. 最终结果 最终结果为f(m,sum/2),其中sum表示所有钩码的总重量。因为只有当天平左右两边钩码的总重量相等时,才能使天平平衡。 三、动态规划算法实现 根据上面的思路,可以得到动态规划的算法实现。 算法步骤: 1. 定义一个m×(sum/2+1)的数组dp,dp[i][j]表示挂了前i个钩码,天平左右两端重量相等的放置方案数。 2. 初始化dp数组。对于dp[0][0]=1,dp[0][j]=0。 3. 从1开始遍历所有钩码。对于第i个钩码,从0开始遍历总重量的一半。根据状态转移方程对dp[i][j]进行更新。 4. 最终结果为dp[m][sum/2],表示挂了所有钩码,天平平衡的方案数。 算法部分代码如下: int weight[N],dp[N][M]; int main() { // 输入数据 int n,m,sum=0; scanf("%d %d",&n,&m); for(int i=1;i<=m;i++){ scanf("%d",&weight[i]); sum+=weight[i]; } // 初始化dp数组 for(int i=0;i<=m;i++){ dp[i][0]=1; } for(int i=1;i<=sum/2;i++){ dp[0][i]=0; } // 动态规划转移 for(int i=1;i<=m;i++){ for(int j=0;j<=sum/2;j++){ dp[i][j]=dp[i-1][j]; if(j>=weight[i]){ dp[i][j]+=dp[i-1][j-weight[i]]; } if(j+weight[i]<=sum/2){ dp[i][j]+=dp[i-1][j+weight[i]]; } } } // 输出结果 printf("%d\n",dp[m][sum/2]); return 0; } 四、总结 本题使用动态规划的方法进行求解,可以找出将钩码全部挂到挂钩上使天平平衡的方法的总数。状态定义、状态转移方程、初始状态、最终结果以及算法实现过程都需要合理设计。动态规划可以用于解决多种计数问题,需要灵活运用。 ### 回答3: 天平平衡问题是一个经典的动态规划问题。假设天平左端的钩子数量为a,右端的数量为b,则a+b=n。从m个不同质量的钩码中选择一些放在左端,另一些放在右端,使天平平衡。假设这些钩码的质量分别为w1、w2、……、wm。我们可以用0或1表示某个钩码是否放在左端,用W表示左端钩码总质量减右端钩码总质量,则有W=(w1×x1)+(w2×x2)+……+(wm×xm),其中xi表示第i个钩码放在左端(xi=1)或右端(xi=0)。 显然,当W=0时,天平平衡。所以问题就转化成了求W=0的xi的所有可能性。我们可以定义一个f(i,j)函数,表示前i个钩码放在左端时减去前j个钩码放在右端时的质量差值。这个函数可以用以下公式计算: f(i,j)=max{f(i-1,j),f(i,j-1),f(i-1,j-1)+wi×(xi-xj)} 其中,f(i-1,j)表示第i个钩码放在右端,f(i,j-1)表示第i个钩码放在左端,f(i-1,j-1)+wi×(xi-xj)表示第i个钩码放在左右两端都试过了,取中间值即可。 使用上述公式计算所有可能的f(i,j)值,当f(m,n)=0时,即为一种天平平衡的方案。此时,用回溯法可以得到具体的钩码摆放方案。 算法的时间复杂度为O(mn),空间复杂度为O(mn)。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值