ABSTRACT
顺序推荐由于其实用性和通过捕获顺序信息的高精度而一直是研究的热点。由于广泛采用基于深度学习(DL)的方法来对用户行为序列下的本地和动态偏好进行建模,因此用户的全局和静态偏好的建模往往被低估了,通常只有一些简单而粗略的用户潜在表示是介绍。此外,大多数现有方法都假设通过考虑历史行为可以完全捕获用户的意图,而忽略了现实中用户意图的可能不确定性,这可能会受到要推荐候选项目的出现的影响。因此,在本文中,我们着眼于这两个问题,即大多数基于DL的顺序推荐方法中用户全局偏好的不完善建模以及候选项目带来的用户意图的不确定性,并提出了一种新的解决方案,即融合项目相似性具有自我注意网络(FISSA)的模型以进行顺序推荐。具体来说,我们将最先进的自我关注顺序推荐(SASRec)模型作为本地表示学习模块,以捕获FISSA中用户行为序列下的动态偏好,并进一步提出一个全局表示学习模块,以改进了用户全局偏好的建模,以及通过考虑候选项目的信息来平衡本地和全局表示的选通模块。全局表示学习模块可以看作是基于位置的关注层,可以有效地与自我注意框架的并行化训练过程很好地吻合。选通模块通过使用MLP层对候选项目,最近交互的项目以及每个用户的全局首选项之间的关系进行建模来计算权重。对五个常用数据集的大量实证研究表明,就两个常用指标而言,我们的FISSA明显优于八个最新基准。
1 INTRODUCTION
推荐系统是缓解信息过载问题的智能工具,尤其是在用户意图不确定时。传统推荐系统仅处理一般推荐,其中用户-项目交互记录可以放置在二维评级矩阵中,以便通过填充该矩阵的空缺来实现预测。与一般推荐不同,顺序推荐将用户的历史记录视为项目序列而不是项目集,以便准确预测他们将与之互动的下一个项目。
顺序推荐现在得到了广泛的研究,因为它与实际情况更加一致,并且在考虑更多信息的情况下有望获得更准确的结果。既然已经在一般推荐中很好地研究了用户的全局和静态偏好,那么开发顺序推荐方法的一种直观方法就是对局部和动态偏好进行建模,并将其与全局偏好相结合。这正是最先进的因式分解个性化马尔可夫链(FPMC)[32]所做的。
具体而言,FPMC由两部分组成,即,将一类反馈矩阵分解的传统矩阵分解(MF)模型,以及对通过个性化马尔可夫链生成的过渡矩阵进行分解的新型MF模型。称为Fossil [8]的改进模型用因子项目相似性模型(FISM)替换了FPMC的前