算法第一部分(3)

并查集

定义:并查集是一种不一样的树形结构,可以使用并查集来解决连接问题
可以使用并查集来解决1.网络节点间的连接问题 2.数学中的集合类的实现
并查集的查找与连接:并查集某索引的值就是其父节点的值。向上查找到父节点指向自己的值就是根节点。可以通过查找两个元素之间的根节点是否相等得出他们是否连接。如果需要将两个点相连,只需要将其中一个节点的根节点指向另一个节点的根节点就可以使两节点相连

基于size的优化,基于rank的路径优化,路径压缩可以对并查集进行优化

// 我们的第三版Union-Find
public class UnionFind3 {

    private int[] parent; // parent[i]表示第一个元素所指向的父节点
    private int[] sz;     // sz[i]表示以i为根的集合中元素个数
    private int count;    // 数据个数

    // 构造函数
    public UnionFind3(int count){
        parent = new int[count];
        sz = new int[count];
        this.count = count;
        // 初始化, 每一个parent[i]指向自己, 表示每一个元素自己自成一个集合
        for( int i = 0 ; i < count ; i ++ ){
            parent[i] = i;
            sz[i] = 1;
        }
    }

    // 查找过程, 查找元素p所对应的集合编号
    // O(h)复杂度, h为树的高度
    private int find(int p){
        assert( p >= 0 && p < count );
        // 不断去查询自己的父亲节点, 直到到达根节点
        // 根节点的特点: parent[p] == p
        while( p != parent[p] )
            p = parent[p];
        return p;
    }

    // 查看元素p和元素q是否所属一个集合
    // O(h)复杂度, h为树的高度
    public boolean isConnected( int p , int q ){
        return find(p) == find(q);
    }

    // 合并元素p和元素q所属的集合
    // O(h)复杂度, h为树的高度
    public void unionElements(int p, int q){

        int pRoot = find(p);
        int qRoot = find(q);

        if( pRoot == qRoot )
            return;

        // 根据两个元素所在树的元素个数不同判断合并方向
        // 将元素个数少的集合合并到元素个数多的集合上
        if( sz[pRoot] < sz[qRoot] ){
            parent[pRoot] = qRoot;
            sz[qRoot] += sz[pRoot];
        }
        else{
            parent[qRoot] = pRoot;
            sz[pRoot] += sz[qRoot];
        }
    }
}

路径压缩所需要修改的地方:
在这里插入图片描述

图论

在这里插入图片描述
使用图要注意是有向图还是无向图,有权图还是无权图

对于图来说,其经常使用的表示方法为:
邻接矩阵 适合使用在稠密图
邻接表 适合使用在稀疏表

稀疏图的简要代码实现:

// 稀疏图 - 邻接表
public class SparseGraph {

    private int n;  // 节点数
    private int m;  // 边数
    private boolean directed;    // 是否为有向图
    private Vector<Integer>[] g; // 图的具体数据

    // 构造函数
    public SparseGraph( int n , boolean directed ){
        assert n >= 0;
        this.n = n;
        this.m = 0;    // 初始化没有任何边
        this.directed = directed;
        // g初始化为n个空的vector, 表示每一个g[i]都为空, 即没有任和边
        g = (Vector<Integer>[])new Vector[n];
        for(int i = 0 ; i < n ; i ++)
            g[i] = new Vector<Integer>();
    }

    public int V(){ return n;} // 返回节点个数
    public int E(){ return m;} // 返回边的个数

    // 向图中添加一个边
    public void addEdge( int v, int w ){

        assert v >= 0 && v < n ;
        assert w >= 0 && w < n ;

        g[v].add(w);
        if( v != w && !directed )
            g[w].add(v);

        m ++;
    }

    // 验证图中是否有从v到w的边
    boolean hasEdge( int v , int w ){

        assert v >= 0 && v < n ;
        assert w >= 0 && w < n ;

        for( int i = 0 ; i < g[v].size() ; i ++ )
            if( g[v].elementAt(i) == w )
                return true;
        return false;
    }

    // 返回图中一个顶点的所有邻边
    // 由于java使用引用机制,返回一个Vector不会带来额外开销,
    public Iterable<Integer> adj(int v) {
        assert v >= 0 && v < n;
        return g[v];
    }
}

稠密图的简要代码实现:

// 稠密图 - 邻接矩阵
public class DenseGraph {

    private int n;  // 节点数
    private int m;  // 边数
    private boolean directed;   // 是否为有向图
    private boolean[][] g;      // 图的具体数据

    // 构造函数
    public DenseGraph( int n , boolean directed ){
        assert n >= 0;
        this.n = n;
        this.m = 0;    // 初始化没有任何边
        this.directed = directed;
        // g初始化为n*n的布尔矩阵, 每一个g[i][j]均为false, 表示没有任和边
        // false为boolean型变量的默认值
        g = new boolean[n][n];
    }

    public int V(){ return n;} // 返回节点个数
    public int E(){ return m;} // 返回边的个数

    // 向图中添加一个边
    public void addEdge( int v , int w ){

        assert v >= 0 && v < n ;
        assert w >= 0 && w < n ;

        if( hasEdge( v , w ) )
            return;

        g[v][w] = true;
        if( !directed )
            g[w][v] = true;

        m ++;
    }

    // 验证图中是否有从v到w的边
    boolean hasEdge( int v , int w ){
        assert v >= 0 && v < n ;
        assert w >= 0 && w < n ;
        return g[v][w];
    }

    // 返回图中一个顶点的所有邻边
    // 由于java使用引用机制,返回一个Vector不会带来额外开销,
    public Iterable<Integer> adj(int v) {
        assert v >= 0 && v < n;
        Vector<Integer> adjV = new Vector<Integer>();
        for(int i = 0 ; i < n ; i ++ )
            if( g[v][i] )
                adjV.add(i);
        return adjV;
    }
}

图的遍历方式

深度优先遍历

定义:深度优先遍历先遍历一个节点0,寻找该节点的相邻节点,与1相邻,接下来来到1节点。直到节点遍历完,需要退回上一下遍历的节点重新遍历
可以通过深度优先遍历求出连通分量,无处可去,就换一个还没遍历的点求出
使用深度优先遍历求连通分量实例:

// 求无权图的联通分量
public class Components {

    Graph G;                    // 图的引用
    private boolean[] visited;  // 记录dfs的过程中节点是否被访问
    private int ccount;         // 记录联通分量个数
    private int[] id;           // 每个节点所对应的联通分量标记

    // 图的深度优先遍历
    void dfs( int v ){

        visited[v] = true;
        //设置ccount可以通过连通分量是否相等得出两个点是否相连接
        id[v] = ccount;

        for( int i: G.adj(v) ){
            if( !visited[i] )
                dfs(i);
        }
    }

    // 构造函数, 求出无权图的联通分量
    public Components(Graph graph){

        // 算法初始化
        G = graph;
        visited = new boolean[G.V()];
        id = new int[G.V()];
        ccount = 0;
        for( int i = 0 ; i < G.V() ; i ++ ){
            visited[i] = false;
            id[i] = -1;
        }

        // 求图的联通分量
        for( int i = 0 ; i < G.V() ; i ++ )
            if( !visited[i] ){
                dfs(i);
                //第二次求图的连通分量
                ccount ++;
            }
    }

    // 返回图的联通分量个数
    int count(){
        return ccount;
    }

    // 查询点v和点w是否联通
    boolean isConnected( int v , int w ){
        assert v >= 0 && v < G.V();
        assert w >= 0 && w < G.V();
        return id[v] == id[w];
    }
}

获取图的路径

public class Path {

    private Graph G;   // 图的引用
    private int s;     // 起始点
    private boolean[] visited;  // 记录dfs的过程中节点是否被访问
    private int[] from;         // 记录路径, from[i]表示查找的路径上i的上一个节点

    // 图的深度优先遍历
    private void dfs( int v ){
        visited[v] = true;
        for( int i : G.adj(v) )
            if( !visited[i] ){
                from[i] = v;
                dfs(i);
            }
    }

    // 构造函数, 寻路算法, 寻找图graph从s点到其他点的路径
    public Path(Graph graph, int s){

        // 算法初始化
        G = graph;
        assert s >= 0 && s < G.V();

        visited = new boolean[G.V()];
        from = new int[G.V()];
        for( int i = 0 ; i < G.V() ; i ++ ){
            visited[i] = false;
            from[i] = -1;
        }
        this.s = s;

        // 寻路算法
        dfs(s);
    }

    // 查询从s点到w点是否有路径
    boolean hasPath(int w){
        assert w >= 0 && w < G.V();
        return visited[w];
    }

    // 查询从s点到w点的路径, 存放在vec中
    Vector<Integer> path(int w){

        assert hasPath(w) ;

        Stack<Integer> s = new Stack<Integer>();
        // 通过from数组逆向查找到从s到w的路径, 存放到栈中
        int p = w;
        while( p != -1 ){
            s.push(p);
            p = from[p];
        }

        // 从栈中依次取出元素, 获得顺序的从s到w的路径
        Vector<Integer> res = new Vector<Integer>();
        while( !s.empty() )
            res.add( s.pop() );

        return res;
    }

    // 打印出从s点到w点的路径
    void showPath(int w){

        assert hasPath(w) ;

        Vector<Integer> vec = path(w);
        for( int i = 0 ; i < vec.size() ; i ++ ){
            System.out.print(vec.elementAt(i));
            if( i == vec.size() - 1 )
                System.out.println();
            else
                System.out.print(" -> ");
        }
    }
}

深度优先遍历稀疏图的复杂度是O(V+E) 稠密图的复杂度是O(V^2)

广度优先遍历

广度优先遍历优先将该节点的子结果全部添加进队列(从遍历的起始点开始,后加进队列应该在后一层)

public class ShortestPath {

    private Graph G;   // 图的引用
    private int s;     // 起始点
    private boolean[] visited;  // 记录dfs的过程中节点是否被访问
    private int[] from;         // 记录路径, from[i]表示查找的路径上i的上一个节点
    private int[] ord;          // 记录路径中节点的次序。ord[i]表示i节点在路径中的次序
                                //即从s到每一个节点的最短距离是多少

    // 构造函数, 寻路算法, 寻找图graph从s点到其他点的路径
    public ShortestPath(Graph graph, int s){

        // 算法初始化
        G = graph;
        assert s >= 0 && s < G.V();

        visited = new boolean[G.V()];
        from = new int[G.V()];
        ord = new int[G.V()];
        for( int i = 0 ; i < G.V() ; i ++ ){
            visited[i] = false;
            from[i] = -1;
            ord[i] = -1;
        }
        this.s = s;

        // 无向图最短路径算法, 从s开始广度优先遍历整张图
        Queue<Integer> q = new LinkedList<Integer>();

        q.add(s);
        visited[s] = true;
        ord[s] = 0;
        while( !q.isEmpty() ){
            int v = q.remove();
            for( int i : G.adj(v) )
                if( !visited[i] ){
                    q.add(i);
                    visited[i] = true;
                    from[i] = v;
                    ord[i] = ord[v] + 1;
                }
        }
    }

    // 查询从s点到w点是否有路径
    public boolean hasPath(int w){
        assert w >= 0 && w < G.V();
        return visited[w];
    }

    // 查询从s点到w点的路径, 存放在vec中
    public Vector<Integer> path(int w){

        assert hasPath(w) ;

        Stack<Integer> s = new Stack<Integer>();
        // 通过from数组逆向查找到从s到w的路径, 存放到栈中
        int p = w;
        while( p != -1 ){
            s.push(p);
            p = from[p];
        }

        // 从栈中依次取出元素, 获得顺序的从s到w的路径
        Vector<Integer> res = new Vector<Integer>();
        while( !s.empty() )
            res.add( s.pop() );

        return res;
    }

    // 打印出从s点到w点的路径
    public void showPath(int w){

        assert hasPath(w) ;

        Vector<Integer> vec = path(w);
        for( int i = 0 ; i < vec.size() ; i ++ ){
            System.out.print(vec.elementAt(i));
            if( i == vec.size() - 1 )
                System.out.println();
            else
                System.out.print(" -> ");
        }
    }

    // 查看从s点到w点的最短路径长度
    // 若从s到w不可达,返回-1
    public int length(int w){
        assert w >= 0 && w < G.V();
        return ord[w];
    }
}

有权图

邻接表的有权图
在这里插入图片描述
在这里插入图片描述
对于有权图来说,我们的每一个边都需要有一个权值

// 边
public class Edge<Weight extends Number & Comparable> implements Comparable<Edge>{

    private int a, b;    // 边的两个端点
    private Weight weight;  // 边的权值

    public Edge(int a, int b, Weight weight)
    {
        this.a = a;
        this.b = b;
        this.weight = weight;
    }

    public Edge(Edge<Weight> e)
    {
        this.a = e.a;
        this.b = e.b;
        this.weight = e.weight;
    }

    public int v(){ return a;} // 返回第一个顶点
    public int w(){ return b;} // 返回第二个顶点
    public Weight wt(){ return weight;}    // 返回权值

    // 给定一个顶点, 返回另一个顶点
    public int other(int x){
        assert x == a || x == b;
        return x == a ? b : a;
    }

    // 输出边的信息
    public String toString(){
        return "" + a + "-" + b + ": " + weight;
    }

    // 边之间的比较
    public int compareTo(Edge that)
    {
        if( weight.compareTo(that.wt()) < 0 )
            return -1;
        else if ( weight.compareTo(that.wt()) > 0 )
            return +1;
        else
            return  0;
    }
}

对于邻接矩阵来说,存的就不应该是true和false,而应该是权,对于邻接表来说,存的应该是边和值

// 稠密图 - 邻接矩阵
public class DenseWeightedGraph<Weight extends Number & Comparable>
        implements WeightedGraph{

    private int n;  // 节点数
    private int m;  // 边数
    private boolean directed;   // 是否为有向图
    private Edge<Weight>[][] g;         // 图的具体数据

    // 构造函数
    public DenseWeightedGraph( int n , boolean directed ){
        assert n >= 0;
        this.n = n;
        this.m = 0;    // 初始化没有任何边
        this.directed = directed;
        // g初始化为n*n的布尔矩阵, 每一个g[i][j]均为null, 表示没有任和边
        // false为boolean型变量的默认值
        g = new Edge[n][n];
        for(int i = 0 ; i < n ; i ++)
            for(int j = 0 ; j < n ; j ++)
                g[i][j] = null;
    }

    public int V(){ return n;} // 返回节点个数
    public int E(){ return m;} // 返回边的个数

    // 向图中添加一个边
    public void addEdge(Edge e){

        assert e.v() >= 0 && e.v() < n ;
        assert e.w() >= 0 && e.w() < n ;

        if( hasEdge( e.v() , e.w() ) )
            return;

        g[e.v()][e.w()] = new Edge(e);
        if( e.v() != e.w() && !directed )
            g[e.w()][e.v()] = new Edge(e.w(), e.v(), e.wt());

        m ++;
    }

    // 验证图中是否有从v到w的边
    public boolean hasEdge( int v , int w ){
        assert v >= 0 && v < n ;
        assert w >= 0 && w < n ;
        return g[v][w] != null;
    }

    // 显示图的信息
    public void show(){

        for( int i = 0 ; i < n ; i ++ ){
            for( int j = 0 ; j < n ; j ++ )
                if( g[i][j] != null )
                    System.out.print(g[i][j].wt()+"\t");
                else
                    System.out.print("NULL\t");
            System.out.println();
        }
    }

    // 返回图中一个顶点的所有邻边
    // 由于java使用引用机制,返回一个Vector不会带来额外开销,
    public Iterable<Edge<Weight>> adj(int v) {
        assert v >= 0 && v < n;
        Vector<Edge<Weight>> adjV = new Vector<Edge<Weight>>();
        for(int i = 0 ; i < n ; i ++ )
            if( g[v][i] != null )
                adjV.add( g[v][i] );
        return adjV;
    }
}

最小生成树问题

针对带权无向图
针对连通图
定义:最小生成树就是在一张有V个顶点的图上,找V - 1 条边,且使得最终的总权值最小
切分:把图中的节点分成两部分,形成一个切分。
横切边:如果一个边的两个端点,属于切分不同的两边,这个称为横切边
切分定理:给定任意切分,横切边中权值最小的边必然属于最小生成树

prim算法

在这里插入图片描述

// 使用Prim算法求图的最小生成树
public class LazyPrimMST<Weight extends Number & Comparable> {

    private WeightedGraph<Weight> G;    // 图的引用
    private MinHeap<Edge<Weight>> pq;   // 最小堆, 算法辅助数据结构
    private boolean[] marked;           // 标记数组, 在算法运行过程中标记节点i是否被访问
    private Vector<Edge<Weight>> mst;   // 最小生成树所包含的所有边
    private Number mstWeight;           // 最小生成树的权值

    // 构造函数, 使用Prim算法求图的最小生成树
    public LazyPrimMST(WeightedGraph<Weight> graph){

        // 算法初始化
        G = graph;
        pq = new MinHeap<Edge<Weight>>(G.E());
        marked = new boolean[G.V()];
        mst = new Vector<Edge<Weight>>();

        // Lazy Prim
        visit(0);
        while( !pq.isEmpty() ){
            // 使用最小堆找出已经访问的边中权值最小的边
            Edge<Weight> e = pq.extractMin();
            // 如果这条边的两端都已经访问过了, 则扔掉这条边
            if( marked[e.v()] == marked[e.w()] )
                continue;
            // 否则, 这条边则应该存在在最小生成树中
            mst.add( e );

            // 访问和这条边连接的还没有被访问过的节点
            if( !marked[e.v()] )
                visit( e.v() );
            else
                visit( e.w() );
        }

        // 计算最小生成树的权值

        mstWeight = mst.elementAt(0).wt();
        for( int i = 1 ; i < mst.size() ; i ++ )
            mstWeight = mstWeight.doubleValue() + mst.elementAt(i).wt().doubleValue();
    }

    // 访问节点v
    private void visit(int v){

        assert !marked[v];
        marked[v] = true;

        // 将和节点v相连接的所有未访问的边放入最小堆中
        for( Edge<Weight> e : G.adj(v) )
            
            if( !marked[e.other(v)] )
               //表明找到了一条横切边
                pq.insert(e);
    }

    // 返回最小生成树的所有边
    Vector<Edge<Weight>> mstEdges(){
        return mst;
    };

    // 返回最小生成树的权值
    Number result(){
        return mstWeight;
    };
}

lazy prim算法的时间复杂度是O(ElogE级别的)
prim算法可以优化成ElogV级别,满足能更新和每个节点相连的最短的横切边
索引堆要满足能取出最小值,还要更新。可以使用索引堆,堆中只要保存和每个节点相连接的最短的横切边。即把当前节点的所有边都存入索引堆相应索引中

// 使用优化的Prim算法求图的最小生成树
public class PrimMST<Weight extends Number & Comparable> {

    private WeightedGraph G;              // 图的引用
    private IndexMinHeap<Weight> ipq;     // 最小索引堆, 算法辅助数据结构
    private Edge<Weight>[] edgeTo;        // 访问的点所对应的边, 算法辅助数据结构
    private boolean[] marked;             // 标记数组, 在算法运行过程中标记节点i是否被访问
    private Vector<Edge<Weight>> mst;     // 最小生成树所包含的所有边
    private Number mstWeight;             // 最小生成树的权值

    // 构造函数, 使用Prim算法求图的最小生成树
    public PrimMST(WeightedGraph graph){

        G = graph;
        assert( graph.E() >= 1 );
        ipq = new IndexMinHeap<Weight>(graph.V());

        // 算法初始化
        marked = new boolean[G.V()];
        edgeTo = new Edge[G.V()];
        for( int i = 0 ; i < G.V() ; i ++ ){
            marked[i] = false;
            edgeTo[i] = null;
        }
        mst = new Vector<Edge<Weight>>();

        // Prim
        visit(0);
        while( !ipq.isEmpty() ){
            // 使用最小索引堆找出已经访问的边中权值最小的边
            // 最小索引堆中存储的是点的索引, 通过点的索引找到相对应的边
            int v = ipq.extractMinIndex();
            assert( edgeTo[v] != null );
            mst.add( edgeTo[v] );
            visit( v );
        }

        // 计算最小生成树的权值
        mstWeight = mst.elementAt(0).wt();
        for( int i = 1 ; i < mst.size() ; i ++ )
            mstWeight = mstWeight.doubleValue() + mst.elementAt(i).wt().doubleValue();
    }

    // 访问节点v
    void visit(int v){

        assert !marked[v];
        marked[v] = true;

        // 将和节点v相连接的未访问的另一端点, 和与之相连接的边, 放入最小堆中
        for( Object item : G.adj(v) ){
            Edge<Weight> e = (Edge<Weight>)item;
            int w = e.other(v);
            // 如果边的另一端点未被访问
            if( !marked[w] ){
                // 如果从没有考虑过这个端点, 直接将这个端点和与之相连接的边加入索引堆
                if( edgeTo[w] == null ){
                    edgeTo[w] = e;
                    ipq.insert(w, e.wt());
                }
                // 如果曾经考虑这个端点, 但现在的边比之前考虑的边更短, 则进行替换
                else if( e.wt().compareTo(edgeTo[w].wt()) < 0 ){
                    edgeTo[w] = e;
                    ipq.change(w, e.wt());
                }
            }
        }

    }

    // 返回最小生成树的所有边
    Vector<Edge<Weight>> mstEdges(){
        return mst;
    }

    // 返回最小生成树的权值
    Number result(){
        return mstWeight;
    }


    // 测试 Prim
    public static void main(String[] args) {

        String filename = "testG1.txt";
        int V = 8;

        SparseWeightedGraph<Double> g = new SparseWeightedGraph<Double>(V, false);
        ReadWeightedGraph readGraph = new ReadWeightedGraph(g, filename);

        // Test Prim MST
        System.out.println("Test Prim MST:");
        PrimMST<Double> primMST = new PrimMST<Double>(g);
        Vector<Edge<Double>> mst = primMST.mstEdges();
        for( int i = 0 ; i < mst.size() ; i ++ )
            System.out.println(mst.elementAt(i));
        System.out.println("The MST weight is: " + primMST.result());

        System.out.println();
    }
}

Krusk算法

每次都找最短的一条边,只要不构成环,使得这一条是最小生成树的边<、u>
对所有的边进行排序,每次都取最小的一条,只要不构成环(可以使用并查集来判断是否生成环),所以这一条就是最小生成树的边

// Kruskal算法求最小生成树
public class KruskalMST<Weight extends Number & Comparable> {

    private Vector<Edge<Weight>> mst;   // 最小生成树所包含的所有边
    private Number mstWeight;           // 最小生成树的权值

    // 构造函数, 使用Kruskal算法计算graph的最小生成树
    public KruskalMST(WeightedGraph graph){

        mst = new Vector<Edge<Weight>>();

        // 将图中的所有边存放到一个最小堆中
        MinHeap<Edge<Weight>> pq = new MinHeap<Edge<Weight>>( graph.E() );
        for( int i = 0 ; i < graph.V() ; i ++ )
            for( Object item : graph.adj(i) ){
                Edge<Weight> e = (Edge<Weight>)item;
                //避免无向图中边被存了两次
                if( e.v() <= e.w() )
                    pq.insert(e);
            }

        // 创建一个并查集, 来查看已经访问的节点的联通情况
        UnionFind uf = new UnionFind(graph.V());
        while( !pq.isEmpty() && mst.size() < graph.V() - 1 ){

            // 从最小堆中依次从小到大取出所有的边
            Edge<Weight> e = pq.extractMin();
            // 如果该边的两个端点是联通的, 说明加入这条边将产生环, 扔掉这条边
            if( uf.isConnected( e.v() , e.w() ) )
                continue;

            // 否则, 将这条边添加进最小生成树, 同时标记边的两个端点联通
            mst.add( e );
            uf.unionElements( e.v() , e.w() );
        }

        // 计算最小生成树的权值
        mstWeight = mst.elementAt(0).wt();
        for( int i = 1 ; i < mst.size() ; i ++ )
            mstWeight = mstWeight.doubleValue() + mst.elementAt(i).wt().doubleValue();
    }

    // 返回最小生成树的所有边
    Vector<Edge<Weight>> mstEdges(){
        return mst;
    }

    // 返回最小生成树的权值
    Number result(){
        return mstWeight;
    }


    // 测试 Kruskal
    public static void main(String[] args) {

        String filename = "testG1.txt";
        int V = 8;

        SparseWeightedGraph<Double> g = new SparseWeightedGraph<Double>(V, false);
        ReadWeightedGraph readGraph = new ReadWeightedGraph(g, filename);

        // Test Kruskal
        System.out.println("Test Kruskal:");
        KruskalMST<Double> kruskalMST = new KruskalMST<Double>(g);
        Vector<Edge<Double>> mst = kruskalMST.mstEdges();
        for( int i = 0 ; i < mst.size() ; i ++ )
            System.out.println(mst.elementAt(i));
        System.out.println("The MST weight is: " + kruskalMST.result());

        System.out.println();
    }
}

在这里插入图片描述

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值