Python 数据分析与数据可视化(工具篇)课程所需扩展库安装

1. Anaconda

软件版本
Anaconda3.5

1.1 更新国内源

在命令提示符内执行

# 清华大学镜像源
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/r/

# 设置搜索时显示通道地址
conda config --set show_channel_urls yes

注 1:如果出现 conda not found 类似的回显,表示环境变量配置有问题
注 2:如果需要换回默认源,执行 conda config --remove-key channels

1.2 创建虚拟环境

在命令提示符下执行

conda create -n data_analysis python=3.5

1.3 激活虚拟环境

在命令提示符下执行

activate data_analysis

1.4 退出虚拟环境

环境使用完成后,在激活后的命令提示符下执行

deactivate

在这里插入图片描述

1.5 删除虚拟环境

如果需要删除,在命令提示符下执行

conda remove -n data_analysis --all

如果不想删除虚拟环境,只想删除包,在命令提示符下执行

conda remove --name $env_name  $package_name

1.6 移植虚拟环境

如果想在新机器上使用原来的虚拟环境,在激活后的命令提示符下执行

conda env export --file data_analysis.yml

在这里插入图片描述
然后在新机器上的命令提示符下执行

conda env create -f data_analysis.yml

2. sklearn

激活虚拟环境之后,可以开始安装第三方库
在激活后的命令提示符下执行

# 安装 TensorFlow
conda install tensorflow

# 安装 sklearn
conda install scikit-learn

注:sklearn 安装过程中会自动安装 numpy

3. pandas

在激活后的命令提示符下执行

conda install pandas

4. xlrd

在激活后的命令提示符下执行

conda install xlrd

5. matplotlib

在激活后的命令提示符下执行

conda install matplotlib

6. jieba

在激活后的命令提示符下执行

pip install jieba

也可尝试使用

conda install -c conda-forge jieba

注:这种方式来源于网络,未进行验证

7. pillow

在激活后的命令提示符下执行

conda install pillow

Python 2 扩展库名称为 PIL
Python 3 扩展库名称为 pillow
两个库使用方法都是相同的

7. 在 Jupyter Notebook 中使用虚拟环境

激活后的命令提示符下执行

conda install ipykernel

# Jupyter_Name 为内核显示在 Jupyter 中的名称
python -m ipykernel install --user --name=Jupyter_Name

执行后,刷新原来的页面即可
在这里插入图片描述

8. 在 PyCharm 中使用虚拟环境

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
创建的虚拟环境的位置在Anaconda安装位置\envs
在这里插入图片描述

其他文章

Python 数据分析与数据可视化(一)Python 开发环境搭建与编码规范
Python 数据分析与数据可视化(二)数据类型、运算符与内置函数
Python 数据分析与数据可视化(三)列表、元组、字典、集合与字符串
Python 数据分析与数据可视化(四)文件操作
Python 数据分析与数据可视化(五)线性代数基本知识
Python 数据分析与数据可视化(六)numpy 数组和矩阵运算
Python 数据分析与数据可视化(七)pandas数据分析实战
Python 数据分析与数据可视化(八)sklearn机器学习实战
Python 数据分析与数据可视化(工具篇)课程所需扩展库安装
Python 数据分析与数据可视化(实践篇)泰坦尼克号旅客生存预测

合并,整形和清理数据以使用Tableau Prep进行分析 Tableau Prep更改了组织中传统数据准备的执行方式。通过提供直观,直接的方式来组合,成形和清除数据,Tableau Prep使分析人员和业务用户更容易更快地开始分析。 Tableau Prep由两种产品组成:用于构建数据流的Tableau Prep Builder和用于在组织内调度,监视和管理流的Tableau Prep Conductor。 三个协调的视图使您可以查看行级数据,每一列的配置文件以及整个数据准备过程。根据手头的任务选择要与之交互的视图。 如果要编辑值,请选择并直接编辑。更改您的联接类型,并立即查看结果。每次执行操作时,即使是数百万行的数据,您都可以立即看到数据更改。通过Tableau Prep Builder,您可以自由地重新排序步骤并进行实验,而不会产生任何后果。 使用智能功能解决常见的数据准备挑战。Tableau Prep Builder使用模糊聚类将重复任务(例如按发音分组)转变为一键式操作。 无论是数据还是电子表格,都可以连接到本地或云中的数据。无需编写代码即可访问,合并和清除不同的数据。Tableau Prep Builder会在可能的情况下智能地将操作推送到数据,让您利用现有的数据投资来提高流程执行性能。 留在您的分析流程中。使用Tableau Desktop打开输出或通过Tableau Server或Tableau Online与他人共享输出很容易。轻松共享可减少摩擦,并帮助您弥合数据准备和分析之间的鸿沟,以获得更好的业务成果。 使用Tableau Prep Conductor,您可以轻松地在服务器环境中发布和运行流。使用Tableau Server或Tableau Online安全共享您的数据源。创建一个环境,组织中的每个人都可以使用准备好的最新数据。 安排您的流量在白天或晚上需要时运行。使您的数据准备过程自动化,以便始终准备好新鲜数据并准备进行分析。 使用当今Tableau Server上可用的相同工具监视流。使用“状态”页面,“管理员视图”和运行历史记录来查看整个服务器上的流的运行状况,以便您可以快速解决任何问题。通过主动警报始终知道您的流量是否健康。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值