一.后缀表达式的计算
后缀表达式:
指的是不包含括号,运算符放在两个运算对象的后面,所有的计算按运算符出现的顺序,严格从左向右进行。(不再考虑运算符的优先规则)。
中缀表达式:
也就是我们日常最容易见到的表达式,从左至右考虑运算符的优先原则。
首先,我们以电脑的思维计算后缀表达式,这里必须用到栈的知识,栈通俗来讲就像一个桶,它里边存放的东西必须满足先进后出的原则。
我们以表达式1 2 4 8 2 - 7 4 - / * + *为例讲解。
**后缀表达式用栈计算的原则就是遇到数字就入栈,遇到运算符就把栈顶两数字计算,再把计算结果入栈,这样反复直到栈空。**
具体过程如下:
第一步:1,2,4,8,2按顺序进栈,遇减号,栈顶2做减数,8做被减数,相减得6入栈
第二步:7,4按顺序进栈,遇减号 ,栈顶4做减数,7做被减数,相减得3入栈
第三步: 遇除号,栈顶3作为除数,6作为被除数,运算得2入栈
第四步:遇乘号,栈顶元素2,4相乘得8入栈
第五步:遇加号,栈顶元素8,2相乘得10入栈
第六步:遇乘号,栈顶元素10,1相乘得10入栈
第七步:输出栈底元素10,即该后缀表达式结果为10
以上就是后缀表达式求解的思想
二.中缀表达式与后缀表达式的转换
对于中缀表达式与后缀表达式的转换有一个简便方法,就是先用括号按运算符优先级把中缀表达式一层一层括起来,每遇到一个括号,就把括号里面的运算符放在本层括号外边,直到把所有的运算符都都放在括号外边,再把括号去掉,得到的表达式就是对应的后缀表达式。
例如:x=a+b*(c-d)/e
x = a + ( b * ( c - d) ) / e
x = a + ( (b * ( c - d ) ) / e )
x = ( (a + ( ( b * ( c - d ) ) / e ) )
x = ( (a + ( b * (c d )- ) ) / e ) )
x = ( ( a + ( b (c d)- ) * ) / e) )
x = ( ( a ( b (c d) - ) * ) e ) / )+
( x ( ( a ( b) c d ) - ) * ) e ) / ) + ) =
最后把括号去掉:x a b c d - * e / + =
其实按这个方法真的是既简单又不容易错,希望可以帮助到大家,如果有什么错误,也欢迎大家指出,谢谢。