完美正方形
问题描述
如果一些边长互不相同的正方形,可以恰好拼出一个更大的正方形,则称其为完美正方形。
历史上,人们花了很久才找到了若干完美正方形。比如:如下边长的22个正方形
2 3 4 6 7 8 12 13 14 15 16 17 18 21 22 23 24 26 27 28 50 60
如【图1.png】那样组合,就是一种解法。此时,
紧贴上边沿的是:60 50
紧贴下边沿的是:26 28 17 21 18
22阶完美正方形一共有8种。下面的组合是另一种:
2 5 9 11 16 17 19 21 22 24 26 30 31 33 35 36 41 46 47 50 52 61
如果告诉你该方案紧贴着上边沿的是从左到右依次为:47 46 61,
你能计算出紧贴着下边沿的是哪几个正方形吗?
请提交紧贴着下边沿的正方形的边长,从左到右,用空格分开。
不要填写任何多余的内容或说明文字。
思路:dfs
将完美正方形看成是一个由154*154个单元格组成。以行列为顺序进行遍历,找到未被填充的格子,并以其为起点将小正方形填充至完美正方形中,当剩余的所有小正方形都无法填充,则进行回溯。当所有小正方形都顺利填入,则得到答案。
打印的序列:22 24 26 21 9 52 5 36 2 35 31 50 17 16 19 11 41 33 30
根据序列画出完美正方形,如下图所示
答案:50 33 30 41
#include<iostream>
#include<cstdlib>
using namespace std;
int a[154][154];
int flag[19];//标记小正方形是否被访问
int c[19];//存储小正方形填入的顺序
int r=0;
int s;
int bj(int x, int y, int len, int p)//填入小正方形或取出小正方形(由p表示是填入还是取出),对完美正方形的单元格进行标记
{
int i,j;
int lenx=x+len;
int leny=y+len;
if(x>=0&&x<=153&&y>=0&&y<=153&&lenx>=0&&lenx<=154&&leny>=0&&leny<=154)
{
if(p==1)
{
for(i=x;i<lenx;i++)
for(j=y;j<leny;j++)
if(a[i][j]==1)//判断能否成功填充
return 0;
for(i=x;i<lenx;i++)//填入
for(j=y;j<leny;j++)
a[i][j]=1;
return 1;
}
else if(p==0)//取出
{
for(i=x;i<lenx;i++)
for(j=y;j<leny;j++)
a[i][j]=0;
return 0;
}
}
else return 0;
}
void pd()//统计被成功填入的小正方形的个数
{
s=0;
int i;
for(i=0;i<19;i++)
s=s+flag[i];
}
int xxx,yyy;
int qd()//得到每次填充的起点
{
int i,j;
for(i=0;i<154;i++)
for(j=0;j<154;j++)
if(a[i][j]==0)
{
xxx=i;
yyy=j;
return 0;
}
}
void dfs(int b[19])
{
int i,j,xx,yy;
pd();qd();
xx=xxx;yy=yyy;
if(s==19)//是否全部成功填入
{
for(i=0;i<19;i++)//打印成功填入的小正方形的顺序
cout<<c[i]<<" ";
cout<<endl;
}
for(i=0;i<19;i++)
if(flag[i]==0)
if(bj(xx,yy,b[i],1)==1)
{
flag[i]=1;c[r++]=b[i];
dfs(b);
bj(xx,yy,b[i],0);flag[i]=0;r--;c[r]=0;
}
}
int main()
{
int i,j;
int b[19]={2,5,9,11,16,17,19,21,22,24,26,30,31,33,35,36,41,50,52};
bj(0,0,47,1);bj(0,47,46,1);bj(0,93,61,1);
dfs(b);
return 0;
}