题目:
链接:剑指 Offer 14- I. 剪绳子;LeetCode 343. 整数拆分
难度:中等
给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0] * k[1] *… * k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。
示例 1:
输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1
示例 2:
输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36
提示:
- 2 <= n <= 58
动态规划:
关于动态规划的解题步骤和思维方法见前文 动态规划核心套路,这里就不赘述了,直接给出最关键的状态转移方程。
明白动态规划本质上是穷举这道题就简单了,比方说 n = 4,我们可以把 4 拆分成 1 + 3, 2 + 2,对应的乘积就是 1 * 3, 2 * 2。
但此时我们直接比较 1 * 3, 2 * 2 的大小还不够,因为 3, 2 它们可能还会被分解成 1 * 2, 1 * 1,也就是说把 n = 4 进一步分解成 1 * (1 * 2), 2 * (1 * 1),这两种可能也要纳入考虑。
到底需不需要进一步分解呢?不知道,所以我们都穷举一遍取最大值就可以了。
integerBreak(4)
= max(1 * 3, 1 * integerBreak(3), 2 * 2, 2 * integerBreak(2))
= max(
1 * max(3, integerBreak(3)),
1 * max(2, integerBreak(2))
)
泛化一下,状态转移方程就出来了:
int res = Integer.MIN_VALUE;
for (int i = 1; i <= n; i++) {
res = max(res, i * max(integerBreak(n - i), n - i));
}
加个备忘录就消掉了重叠子问题,整个复杂度只有 O(N),具体看代码吧。
代码:
class Solution {
private:
vector<int> memo;
public:
int cuttingRope(int n) {
memo = vector<int>(n + 1, 0);
return dp(n);
}
int dp(int n) {
if(n == 0) return 0;
if(n == 1) return 1;
if(memo[n] > 0) return memo[n];
int ans = 0;
for(int i = 1; i < n; i++)
{
ans = max(ans, i * max(dp(n - i), n - i));
}
memo[n] = ans;
return ans;
}
};
时间复杂度O(N2)。
空间复杂度O(N)。