剑指 Offer 14- I. 剪绳子 / LeetCode 343. 整数拆分(动态规划)

题目:

链接:剑指 Offer 14- I. 剪绳子LeetCode 343. 整数拆分
难度:中等

给你一根长度为 n 的绳子,请把绳子剪成整数长度的 m 段(m、n都是整数,n>1并且m>1),每段绳子的长度记为 k[0],k[1]…k[m-1] 。请问 k[0] * k[1] *… * k[m-1] 可能的最大乘积是多少?例如,当绳子的长度是8时,我们把它剪成长度分别为2、3、3的三段,此时得到的最大乘积是18。

示例 1:

输入: 2
输出: 1
解释: 2 = 1 + 1, 1 × 1 = 1

示例 2:

输入: 10
输出: 36
解释: 10 = 3 + 3 + 4, 3 × 3 × 4 = 36

提示:

  • 2 <= n <= 58

动态规划:

关于动态规划的解题步骤和思维方法见前文 动态规划核心套路,这里就不赘述了,直接给出最关键的状态转移方程。

明白动态规划本质上是穷举这道题就简单了,比方说 n = 4,我们可以把 4 拆分成 1 + 3, 2 + 2,对应的乘积就是 1 * 3, 2 * 2。

但此时我们直接比较 1 * 3, 2 * 2 的大小还不够,因为 3, 2 它们可能还会被分解成 1 * 2, 1 * 1,也就是说把 n = 4 进一步分解成 1 * (1 * 2), 2 * (1 * 1),这两种可能也要纳入考虑。

到底需不需要进一步分解呢?不知道,所以我们都穷举一遍取最大值就可以了。

integerBreak(4)
= max(1 * 3, 1 * integerBreak(3), 2 * 2, 2 * integerBreak(2))
= max(
    1 * max(3, integerBreak(3)),
    1 * max(2, integerBreak(2))
)

泛化一下,状态转移方程就出来了:

int res = Integer.MIN_VALUE;
for (int i = 1; i <= n; i++) {
    res = max(res, i * max(integerBreak(n - i), n - i));
}

加个备忘录就消掉了重叠子问题,整个复杂度只有 O(N),具体看代码吧。

代码:

class Solution {
private:
    vector<int> memo;
public:
    int cuttingRope(int n) {
        memo = vector<int>(n + 1, 0);
        return dp(n);
    }

    int dp(int n) {
        if(n == 0) return 0;
        if(n == 1) return 1;
        if(memo[n] > 0) return memo[n];
        int ans = 0;
        for(int i = 1; i < n; i++)
        {
            ans = max(ans, i * max(dp(n - i), n - i));
        }
        memo[n] = ans;
        return ans;
    }
};

时间复杂度O(N2)。
空间复杂度O(N)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值