题目:
链接:LeetCode 134. 加油站
难度:中等
在一条环路上有 n 个加油站,其中第 i 个加油站有汽油 gas[i] 升。
你有一辆油箱容量无限的的汽车,从第 i 个加油站开往第 i+1 个加油站需要消耗汽油 cost[i] 升。你从其中的一个加油站出发,开始时油箱为空。
给定两个整数数组 gas 和 cost ,如果你可以绕环路行驶一周,则返回出发时加油站的编号,否则返回 -1 。如果存在解,则 保证 它是 唯一 的。
示例 1:
输入: gas = [1,2,3,4,5], cost = [3,4,5,1,2]
输出: 3
解释:
从 3 号加油站(索引为 3 处)出发,可获得 4 升汽油。此时油箱有 = 0 + 4 = 4 升汽油
开往 4 号加油站,此时油箱有 4 - 1 + 5 = 8 升汽油
开往 0 号加油站,此时油箱有 8 - 2 + 1 = 7 升汽油
开往 1 号加油站,此时油箱有 7 - 3 + 2 = 6 升汽油
开往 2 号加油站,此时油箱有 6 - 4 + 3 = 5 升汽油
开往 3 号加油站,你需要消耗 5 升汽油,正好足够你返回到 3 号加油站。
因此,3 可为起始索引。
示例 2:
输入: gas = [2,3,4], cost = [3,4,3]
输出: -1
解释:
你不能从 0 号或 1 号加油站出发,因为没有足够的汽油可以让你行驶到下一个加油站。
我们从 2 号加油站出发,可以获得 4 升汽油。 此时油箱有 = 0 + 4 = 4 升汽油
开往 0 号加油站,此时油箱有 4 - 3 + 2 = 3 升汽油
开往 1 号加油站,此时油箱有 3 - 3 + 3 = 3 升汽油
你无法返回 2 号加油站,因为返程需要消耗 4 升汽油,但是你的油箱只有 3 升汽油。
因此,无论怎样,你都不可能绕环路行驶一周。
提示:
- gas.length == n
- cost.length == n
- 1 <= n <= 105
- 0 <= gas[i], cost[i] <= 104
方法一:
函数图像法:
sum 代表路途中油箱的油量,如果把这个「最低点」作为起点,即把这个点作为坐标轴原点,就相当于把图像「最大限度」向上平移了:
如果经过平移后图像全部在 x 轴以上,就说明可以行使一周。
代码一:
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int n = gas.size();
int minsum = 0, minpos = 0; //函数最低点的值,函数最低点的坐标(出发站编号)
int sum = 0;
for(int i = 0; i < n; i++)
{
sum += gas[i] - cost[i];
if(sum < minsum) {
minsum = sum;
minpos = i + 1;
}
}
if(sum < 0) return -1;
return minpos % n;
}
};
时间复杂度O(n),空间复杂度O(1)。
方法二:
贪心解法:
用贪心思路解决这道题的关键在于以下这个结论:
如果选择站点i作为起点「恰好」无法走到站点j,那么i和j中间的任意站点k都不可能作为起点。
比如说,如果从站点1出发,走到站点5时油箱中的油量「恰好」减到了负数,那么说明站点1「恰好」无法到达站点5;那么你从站点2,3,4任意一个站点出发都无法到达5,因为到达站点5时油箱的油量也必然被减到负数。
如何证明这个结论?
假设sum记录当前油箱中的油量,如果从站点i出发(sum = 0),走到j时恰好出现sum < 0的情况,那说明走到i, j之间的任意站点k时都满足sum > 0,对吧。
如果把k作为起点的话,相当于在站点k时sum = 0,那走到j时必然有sum < 0,也就是说k肯定不能是起点。
拜托,从i出发走到k好歹sum > 0,都无法达到j,现在你还让sum = 0了,那更不可能走到j了对吧。
综上,这个结论就被证明了。
回想一下我们开头说的暴力解法是怎么做的?
如果我发现从i出发无法走到j,那么显然i不可能是起点。
现在,我们发现了一个新规律,可以推导出什么?
如果我发现从i出发无法走到j,那么i以及i, j之间的所有站点都不可能作为起点。
看到冗余计算了吗?看到优化的点了吗?
这就是贪心思路的本质,如果找不到重复计算,那就通过问题中一些隐藏较深的规律,来减少冗余计算。
代码二:
class Solution {
public:
int canCompleteCircuit(vector<int>& gas, vector<int>& cost) {
int n = gas.size();
for(int i = 0; i < n;)
{
int sum = 0;
bool flag = true; //以i为出发站时能否环行一周
for(int j = i; j < i + n; j++)
{
sum += gas[j % n] - cost[j % n]; //行至第j+1个加油站时,油箱内的油量
if(sum < 0) {
if(j + 1 >= n) return -1; //全部出发点已遍历完,未找到可行解
i = (j + 1) % n; //无法从第i站到第j+1站,则从中间任意一站都无法到第j+1站。那么以第j+1站为出发站继续检查
flag = false;
break;
}
}
if(flag) return i; //以第i站为出发站可以走完一周,返回i
}
return -1;
}
};
时间复杂度O(n),空间复杂度O(1)。