资源限制
时间限制:1.0s 内存限制:256.0MB
问题描述
很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。
为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。
J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。
聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。
J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?
输入格式
输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数
城市从1开始依次编号,1号城市为首都。
接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)
每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。
输出格式
输出一个整数,表示大臣J最多花费的路费是多少。
样例输入1
5
1 2 2
1 3 1
2 4 5
2 5 4
样例输出1
135
输出格式
大臣J从城市4到城市5要花费135的路费。
#include<iostream>
#include<vector>
#include<string>
#include<sstream>
#include<algorithm>
#include<cstring>
#define MAXN 10000;
using namespace std;
struct Pair{
int Q,D;//分别代表 目的地和距离
};
vector<Pair> edges[10000];
int ans;
int number;
void dfs(int from,int n, int distance)
{
for(int i = 0;i<edges[n].size();i++)
{
if(edges[n][i].Q == from)
{
if(distance>ans)
{
ans = distance;
number = n;
}
}
else
dfs(n,edges[n][i].Q, distance + edges[n][i].D);
}
return;
}
int main()
{
int n;
cin>>n;
cin.get();
string inputline;
stringstream ss;
int P,Q,D;
for(int i = 0;i<n - 1;i++)//是一棵树,所以节点为n,边为n - 1
{
//简单cin就好,我魔怔了
ss.clear();
getline(cin, inputline);
ss.str(inputline);
ss>>P;
ss>>Q;
ss>>D;
edges[P].insert(edges[P].end(),{Q, D});
edges[Q].insert(edges[Q].end(),{P, D});
}
/*
//输出检验
for(int i = 1;i<=n;i++)
for(int j = 0;j<edges[i].size();j++)
cout<<i<<" "<< edges[i][j].Q<<" "<<edges[i][j].D<<endl;
*/
ans = 0;
dfs (0,1,0);//0是根的根 ,找多离根最远的点
ans = 1;
dfs(0,number,0);
cout<<(21 + ans) * ans /2<<endl;
return 0;
}