试题 历届试题 大臣的旅费

这是一道关于计算大臣J在不休息的情况下,从一个城市出发到另一个城市,途中可能的最大路费的问题。T王国的公路网络设计使得任何大城市都能通过唯一路径到达首都。J大臣发现路费与行程距离成正比,且每增加一公里费用增加11。给定城市数和道路信息,需要找出J大臣可能的最大花费。
摘要由CSDN通过智能技术生成

资源限制

时间限制:1.0s 内存限制:256.0MB

问题描述

很久以前,T王国空前繁荣。为了更好地管理国家,王国修建了大量的快速路,用于连接首都和王国内的各大城市。

为节省经费,T国的大臣们经过思考,制定了一套优秀的修建方案,使得任何一个大城市都能从首都直接或者通过其他大城市间接到达。同时,如果不重复经过大城市,从首都到达每个大城市的方案都是唯一的。

J是T国重要大臣,他巡查于各大城市之间,体察民情。所以,从一个城市马不停蹄地到另一个城市成了J最常做的事情。他有一个钱袋,用于存放往来城市间的路费。

聪明的J发现,如果不在某个城市停下来修整,在连续行进过程中,他所花的路费与他已走过的距离有关,在走第x千米到第x+1千米这一千米中(x是整数),他花费的路费是x+10这么多。也就是说走1千米花费11,走2千米要花费23。

J大臣想知道:他从某一个城市出发,中间不休息,到达另一个城市,所有可能花费的路费中最多是多少呢?

输入格式

输入的第一行包含一个整数n,表示包括首都在内的T王国的城市数

城市从1开始依次编号,1号城市为首都。

接下来n-1行,描述T国的高速路(T国的高速路一定是n-1条)

每行三个整数Pi, Qi, Di,表示城市Pi和城市Qi之间有一条高速路,长度为Di千米。

输出格式

输出一个整数,表示大臣J最多花费的路费是多少。

样例输入1

5
1 2 2
1 3 1
2 4 5
2 5 4

样例输出1

135

输出格式

大臣J从城市4到城市5要花费135的路费。

#include<iostream>
#include<vector>
#include<string>
#include<sstream> 
#include<algorithm>
#include<cstring>
#define MAXN 10000;

using namespace std;
struct Pair{
	int Q,D;//分别代表 目的地和距离 
};
vector<Pair> edges[10000];
int ans;
int number;

void dfs(int from,int n, int distance)
{
	for(int i = 0;i<edges[n].size();i++)
	{
		if(edges[n][i].Q == from)
		{
			if(distance>ans)
			{
				ans = distance;
				number = n;
			}
		}
		else 
			dfs(n,edges[n][i].Q, distance + edges[n][i].D);
	}
	return;
}


int main()
{
	int n;
	cin>>n;
	cin.get();
	string inputline;
	stringstream ss;
	int P,Q,D;
	for(int i = 0;i<n - 1;i++)//是一棵树,所以节点为n,边为n - 1 
	{
	//简单cin就好,我魔怔了
		ss.clear();
		getline(cin, inputline);
		ss.str(inputline);
		ss>>P;
		ss>>Q;
		ss>>D;
		edges[P].insert(edges[P].end(),{Q, D});
		edges[Q].insert(edges[Q].end(),{P, D});
	}
	
	/*
	//输出检验 
	for(int i = 1;i<=n;i++)
		for(int j = 0;j<edges[i].size();j++)
			cout<<i<<" "<< edges[i][j].Q<<" "<<edges[i][j].D<<endl;
	*/
	
	ans = 0;
	dfs (0,1,0);//0是根的根 ,找多离根最远的点 
	ans = 1;
	dfs(0,number,0);
	cout<<(21 + ans) * ans /2<<endl;

	return 0;
} 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值