好久不见,各位。出差在外,没有太多时间更新。
让我们开始第三章--单分类。
简要来说,单分类就是,你只需要将某一状态的数据给NEAI,经过训练后AI可以判断新数据是都为当前状态。
这里讲解的就非常简单了,很多内容都在第二章铺垫好了,大家可以去看下。
跳转链接
NanoEdge AI Studio 教程 第二章--异常数据分析_有没有关于x-cube-ai和nano edge ai studio的书-CSDN博客
目录
操作如下
1.选择单分类
2.选择MCU和数据维度
3.添加数据
数据要求和第二章要求一样,可以去看一下
4.训练模型
5.有效性验证
6.数据模拟
5和6比较简单,可做可不做,这里可以参考第二章。
7.模型获取
这里给大家稍微讲一下,右侧的部分是如何使用这个库文件的示例。
fill_buffer()函数是获取数据的函数,你需要自己去具体实现。
主要流程就是,将数据通过fill_buffer()填充到input_user_buffer中,然后调用neai_oneclass()函数进行判断。判断的结果会在oneclass_result中。
而在头文件声明中,我们可以看到oneclass_result值代表的结果
1.非正常值
2.正常值
8.模型布置
解压得到的模型,将这三个文件复制到你的工程目录下,
打开工程文件,在添加库函数,添加头文件
实例化填充函数
写入主函数。
OK,后面就可以直接用了。这个比阈值判断要准确,尤其是多维数据的时候,简单高效。