Description
在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,
否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。
例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。
Input
第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)
分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。
Output
每行一个整数,连通分量个数。
Sample
Input
2 3 1 1 2 3 2 3 2 1 2
Output
2 1
Hint
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int point[20] = {0};
int rget(int v){
if(point[v] == v){
return v;
}
else{
point[v] = rget(point[v]);
return point[v];
}
}
void rmerge(int u1, int u2){
in