D - 数据结构实验:连通分量个数

这篇博客介绍了如何在无向图中判断连通性和计算连通分量的个数。对于输入的图数据,算法需找出所有彼此之间有路径的顶点集合,这些集合即为连通分量。示例展示了输入格式和预期输出,内容适用于数据结构、图论和算法的学习者,使用C语言实现。
摘要由CSDN通过智能技术生成

Description

 在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,

否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。

例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。

Input

 第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)

分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。

Output

 每行一个整数,连通分量个数。

Sample

Input 

2
3 1
1 2
3 2
3 2
1 2

Output 

2
1

Hint

#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int point[20] = {0};
int rget(int v){
    if(point[v] == v){
        return v;
    }
    else{
        point[v] = rget(point[v]);
        return point[v];
    }
}
void rmerge(int u1, int u2){
    in
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

程序员豪仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值