Description
在无向图中,如果从顶点vi到顶点vj有路径,则称vi和vj连通。如果图中任意两个顶点之间都连通,则称该图为连通图,
否则,称该图为非连通图,则其中的极大连通子图称为连通分量,这里所谓的极大是指子图中包含的顶点个数极大。
例如:一个无向图有5个顶点,1-3-5是连通的,2是连通的,4是连通的,则这个无向图有3个连通分量。
Input
第一行是一个整数T,表示有T组测试样例(0 < T <= 50)。每个测试样例开始一行包括两个整数N,M,(0 < N <= 20,0 <= M <= 200)
分别代表N个顶点,和M条边。下面的M行,每行有两个整数u,v,顶点u和顶点v相连。
Output
每行一个整数,连通分量个数。
Sample
Input
2 3 1 1 2 3 2 3 2 1 2
Output
2 1
Hint
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
int point[20] = {0};
int rget(int v){
if(point[v] == v){
return v;
}
else{
point[v] = rget(point[v]);
return point[v];
}
}
void rmerge(int u1, int u2){
int v1;
int v2;
v1 = rget(u1);
v2 = rget(u2);
//printf("%d %d %d %d\n", v1, v2, point[v1], point[v2]);
if(v1 != v2){
poin

这篇博客介绍了如何在无向图中判断连通性和计算连通分量的个数。对于输入的图数据,算法需找出所有彼此之间有路径的顶点集合,这些集合即为连通分量。示例展示了输入格式和预期输出,内容适用于数据结构、图论和算法的学习者,使用C语言实现。
最低0.47元/天 解锁文章
484

被折叠的 条评论
为什么被折叠?



