mapreduce框架设计思想

本文介绍了MapReduce框架的设计思想,以WordCount为例,详细阐述了其运行流程。每个Map任务按行读取数据,使用HashMap统计单词出现次数,然后根据特定规则将数据提交给Reduce任务进行聚合。MapReduce Application Master负责任务调度,确保高效的数据处理和输出。
摘要由CSDN通过智能技术生成

传智播客大数据day08

1、mapreduce框架设计思想 

mapreduce结构 
一个完整的mapreduce程序在分布式运行时有三类实例进程: 
1、MRAppMaster:负责整个程序的过程调度及状态协调 
2、mapTask:负责map阶段的整个数据处理流程 
3、ReduceTask:负责reduce阶段的整个数据处理流程

运行流程:以wordcount(单词统计)为例 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值