mapreduce架构设计

本文详细阐述了分布式计算的过程,包括用户提交作业代码后的源数据切片、Master节点调用Worker执行Map和Reduce任务。Map阶段中,Worker加载数据切片并执行映射操作,结果暂存于本地。随后,Reduce阶段由Master调度,ReduceWorker读取Map的输出并执行聚合操作,最终结果保存到HDFS。这个流程揭示了大数据处理中的核心步骤。
摘要由CSDN通过智能技术生成

在这里插入图片描述1 首先用户提交作业代码,进行源数据切片处理
2 master调用worker执行map任务
3 worker载入源数据切片
4 worker执行map任务,并将结果保存到本地。
5 master调用worker执行reduce任务 reduce worker读取map的输出结果
6 worker执行reduce任务,并将结果保存到HDFS

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值