Word2Vec 的pytorch 实现(简单)

import gc
import torch 
import numpy as np 
from torch import nn,optim
import matplotlib.pyplot as plt
from torch.utils.data import DataLoader,TensorDataset

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

定义数据

sentences = ["jack like dog", "jack like cat", "jack like animal",
  "dog cat animal", "banana apple cat dog like", "dog fish milk like",
  "dog cat animal like", "jack like apple", "apple like", "jack like banana",
  "apple banana jack movie book music like"]


word_sequence = " ".join(sentences).split()

vocab = list(set(word_sequence))
word2idx = {w:i for i,w in enumerate(vocab)}
print("*"*85)
print("word_sequence:",word_sequence)
print("*"*85)
print("vocab:",vocab)
print("*"*85)
print("word2idx:",word2idx)
*************************************************************************************
word_sequence: ['jack', 'like', 'dog', 'jack', 'like', 'cat', 'jack', 'like', 'animal', 'dog', 'cat', 'animal', 'banana', 'apple', 'cat', 'dog', 'like', 'dog', 'fish', 'milk', 'like', 'dog', 'cat', 'animal', 'like', 'jack', 'like', 'apple', 'apple', 'like', 'jack', 'like', 'banana', 'apple', 'banana', 'jack', 'movie', 'book', 'music', 'like']
*************************************************************************************
vocab: ['dog', 'cat', 'movie', 'jack', 'fish', 'milk', 'music', 'book', 'apple', 'banana', 'like', 'animal']
*************************************************************************************
word2idx: {'dog': 0, 'cat': 1, 'movie': 2, 'jack': 3, 'fish': 4, 'milk': 5, 'music': 6, 'book': 7, 'apple': 8, 'banana': 9, 'like': 10, 'animal': 11}

数据预处理

# [1,2,3,4,5,6]

batch_size = 4
embedding_size=2
window = 2
vocab_size = len(vocab)


skip_grams = []
for idx in range(window,len(word_sequence)-window):
    #找到中心词
    center = word2idx[word_sequence[idx]]
    #临近词的索引
    context_idx = list(range(idx-window,idx))+list(range(idx+1,idx+window+1))
    # 找到这些词在word2idx中对应的索引
    context = [word2idx[word_sequence[i]] for i in context_idx]
    for w in context:
        skip_grams.append([center,w])
        
def make_data(skip_grams):
    input_data = []
    output_data = []
    for i in range(len(skip_grams)):
        input_data.append(np.eye(vocab_size)[skip_grams[i][0]])
        output_data.append(skip_grams[i][1])
    return input_data,output_data

input_data,output_data = make_data(skip_grams)
input_data= torch.tensor(input_data,dtype=torch.float32)
output_data = torch.tensor(output_data,dtype=torch.long)
dataset = TensorDataset(input_data, output_data)
train_loader = DataLoader(dataset,batch_size,shuffle =True)

构建模型

class word2vec_(nn.Module):
    def __init__(self):
        super(word2vec_,self).__init__()
        self.w = nn.Parameter(torch.randn(vocab_size,embedding_size).type(torch.float32))
        self.v = nn.Parameter(torch.randn(embedding_size,vocab_size).type(torch.float32))
    def forward(self,x):
#         x:[batch_size,voc_Size]
        
        hidden = torch.matmul(x,self.w)
        #[batch_size,embedding_size]
        
        output = torch.matmul(hidden,self.v )
        return output

model =word2vec_().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.0001)

num_epochs = 100
loss_all = []
for epoch in range(num_epochs):
    train_loss = 0
    train_num = 0
    for step,(x,y) in enumerate(train_loader):
        x = x.to(device)
        y = y.to(device)
        z_hat = model.forward(x)
        loss= criterion(z_hat,y)
        loss.backward()
        optimizer.zero_grad()
        optimizer.step()
        train_loss += loss.item() *len(y)
        train_num+=len(y)
    loss_all.append(train_loss/train_num)
    print(f"Epoch:{epoch+1} Loss:{loss_all[-1]:0.8f}")
    del x,y,loss,train_loss,train_num
    gc.collect()
    torch.cuda.empty_cache()
Epoch:1 Loss:3.78907597
Epoch:2 Loss:3.78907595
Epoch:3 Loss:3.78907597
Epoch:4 Loss:3.78907596
Epoch:5 Loss:3.78907599
Epoch:6 Loss:3.78907598
Epoch:7 Loss:3.78907598
Epoch:8 Loss:3.78907598
Epoch:9 Loss:3.78907598
Epoch:10 Loss:3.78907600
Epoch:11 Loss:3.78907598
Epoch:12 Loss:3.78907597
Epoch:13 Loss:3.78907598
Epoch:14 Loss:3.78907599
Epoch:15 Loss:3.78907598
Epoch:16 Loss:3.78907599
Epoch:17 Loss:3.78907599
Epoch:18 Loss:3.78907596
Epoch:19 Loss:3.78907598
Epoch:20 Loss:3.78907598
Epoch:21 Loss:3.78907597
Epoch:22 Loss:3.78907598
Epoch:23 Loss:3.78907599
Epoch:24 Loss:3.78907597
Epoch:25 Loss:3.78907599
Epoch:26 Loss:3.78907596
Epoch:27 Loss:3.78907596
Epoch:28 Loss:3.78907598
Epoch:29 Loss:3.78907597
Epoch:30 Loss:3.78907598
Epoch:31 Loss:3.78907598
Epoch:32 Loss:3.78907599
Epoch:33 Loss:3.78907597
Epoch:34 Loss:3.78907596
Epoch:35 Loss:3.78907598
Epoch:36 Loss:3.78907597
Epoch:37 Loss:3.78907598
Epoch:38 Loss:3.78907599
Epoch:39 Loss:3.78907599
Epoch:40 Loss:3.78907598
Epoch:41 Loss:3.78907598
Epoch:42 Loss:3.78907602
Epoch:43 Loss:3.78907597
Epoch:44 Loss:3.78907597
Epoch:45 Loss:3.78907599
Epoch:46 Loss:3.78907598
Epoch:47 Loss:3.78907596
Epoch:48 Loss:3.78907597
Epoch:49 Loss:3.78907597
Epoch:50 Loss:3.78907598
Epoch:51 Loss:3.78907597
Epoch:52 Loss:3.78907596
Epoch:53 Loss:3.78907595
Epoch:54 Loss:3.78907596
Epoch:55 Loss:3.78907596
Epoch:56 Loss:3.78907598
Epoch:57 Loss:3.78907598
Epoch:58 Loss:3.78907600
Epoch:59 Loss:3.78907599
Epoch:60 Loss:3.78907598
Epoch:61 Loss:3.78907596
Epoch:62 Loss:3.78907597
Epoch:63 Loss:3.78907597
Epoch:64 Loss:3.78907598
Epoch:65 Loss:3.78907597
Epoch:66 Loss:3.78907599
Epoch:67 Loss:3.78907598
Epoch:68 Loss:3.78907596
Epoch:69 Loss:3.78907599
Epoch:70 Loss:3.78907598
Epoch:71 Loss:3.78907597
Epoch:72 Loss:3.78907597
Epoch:73 Loss:3.78907596
Epoch:74 Loss:3.78907599
Epoch:75 Loss:3.78907596
Epoch:76 Loss:3.78907596
Epoch:77 Loss:3.78907598
Epoch:78 Loss:3.78907598
Epoch:79 Loss:3.78907596
Epoch:80 Loss:3.78907595
Epoch:81 Loss:3.78907598
Epoch:82 Loss:3.78907597
Epoch:83 Loss:3.78907599
Epoch:84 Loss:3.78907596
Epoch:85 Loss:3.78907598
Epoch:86 Loss:3.78907598
Epoch:87 Loss:3.78907598
Epoch:88 Loss:3.78907598
Epoch:89 Loss:3.78907597
Epoch:90 Loss:3.78907598
Epoch:91 Loss:3.78907597
Epoch:92 Loss:3.78907597
Epoch:93 Loss:3.78907597
Epoch:94 Loss:3.78907597
Epoch:95 Loss:3.78907597
Epoch:96 Loss:3.78907596
Epoch:97 Loss:3.78907597
Epoch:98 Loss:3.78907597
Epoch:99 Loss:3.78907597
Epoch:100 Loss:3.78907597

可视化

for i, label in enumerate(vocab):
    W, WT = model.parameters()
    x,y = float(W[i][0]), float(W[i][1])
    plt.scatter(x, y)
    plt.annotate(label, xy=(x, y), xytext=(5, 2), textcoords='offset points', ha='right', va='bottom')
plt.show()

png


  • 3
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 6
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值