并查集

并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。

并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。

 

                                                                                                                                                                       ----百度百科 

 

   并查集

      并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。

  三种主要操作:

Make_Set(x):

建立一个新的集合,其唯一成员就是x,因此这个集合的代表也是x,并查集要求各集合是不相交的,因此要求x没有在其他集合中出现过。

Find_Set(x):

返回能代表x所在集合的节点,通常返回x所在集合的根节点。有递归和非递归两种方法,下面会有讲解。

Union(x, y):

将包含x,y的动态集合合并为一个新的集合。合并两个集合的关键是找到两个集合的根节点,如果两个根节点相同则不用合并;如果不同,则需要合并。

                     

并查集的优化:

Union(x, y)时按秩合并:

合并时,如果两个集合的秩相同,任选一个根做为父节点,并增加其秩。

秩不同时,让较小秩的集合指向较大秩的集合,这时秩的大小不变。

秩和集合的数目是不一样的,秩表示节点高度的一个商界;集合的数目表示集合中节点的总数。

Find_Set(x)路径压缩:

在Find_Set(x)中,是查找路径上的每个节点都直接指向根节点,这样下次再找根节点的时间复杂度会变成o(1)

 

//建立一个新的集合,每一个子节点就是一个数,本身就是他的根节点
void Make_Set(int x)
{
    father[x] = x;          //根节点
    R[x] = 0;      //秩大小
}

//通过递归向上查找根节点,回溯时改变当前节点的父节点,直接指向根节点。
int Find_Set(int x)
{
    if(x != father[x])
        father[x] = Find_set(father[x]);
    return father[x];

}

//将根节点设置为-1的非递归方法
int Find_Set2(int x)
{
    int y = x;
    while(y!= -1)
        y = father[y];
    return y;
}

//两个集合的合并算法
void Union(int x, int y)
{
    int GrandX = Find_set(x);
    int GrandY = Find_set(y);

    if(GrandX == GrandY)
        return;
    if(R[GrandX] < R[GrandY])
        father[GrandX] = GrandY;
    else
    {
        if(R[GrandX] == R[GrandY])
            R[GrandX]++;
        father[GrandY] = GrandX;    
    }
}

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值