并查集,在一些有N个元素的集合应用问题中,我们通常是在开始时让每个元素构成一个单元素的集合,然后按一定顺序将属于同一组的元素所在的集合合并,其间要反复查找一个元素在哪个集合中。这一类问题近几年来反复出现在信息学的国际国内赛题中,其特点是看似并不复杂,但数据量极大,若用正常的数据结构来描述的话,往往在空间上过大,计算机无法承受;即使在空间上勉强通过,运行的时间复杂度也极高,根本就不可能在比赛规定的运行时间(1~3秒)内计算出试题需要的结果,只能用并查集来描述。
并查集是一种树型的数据结构,用于处理一些不相交集合(Disjoint Sets)的合并及查询问题。常常在使用中以森林来表示。
----百度百科
并查集
并查集是一种树形结构,又叫“不相交集合”,保持了一组不相交的动态集合,每个集合通过一个代表来识别,代表即集合中的某个成员,通常选择根做这个代表。
三种主要操作:
Make_Set(x):
建立一个新的集合,其唯一成员就是x,因此这个集合的代表也是x,并查集要求各集合是不相交的,因此要求x没有在其他集合中出现过。
Find_Set(x):
返回能代表x所在集合的节点,通常返回x所在集合的根节点。有递归和非递归两种方法,下面会有讲解。
Union(x, y):
将包含x,y的动态集合合并为一个新的集合。合并两个集合的关键是找到两个集合的根节点,如果两个根节点相同则不用合并;如果不同,则需要合并。
并查集的优化:
Union(x, y)时按秩合并:
合并时,如果两个集合的秩相同,任选一个根做为父节点,并增加其秩。
秩不同时,让较小秩的集合指向较大秩的集合,这时秩的大小不变。
秩和集合的数目是不一样的,秩表示节点高度的一个商界;集合的数目表示集合中节点的总数。
Find_Set(x)路径压缩:
在Find_Set(x)中,是查找路径上的每个节点都直接指向根节点,这样下次再找根节点的时间复杂度会变成o(1)
//建立一个新的集合,每一个子节点就是一个数,本身就是他的根节点
void Make_Set(int x)
{
father[x] = x; //根节点
R[x] = 0; //秩大小
}
//通过递归向上查找根节点,回溯时改变当前节点的父节点,直接指向根节点。
int Find_Set(int x)
{
if(x != father[x])
father[x] = Find_set(father[x]);
return father[x];
}
//将根节点设置为-1的非递归方法
int Find_Set2(int x)
{
int y = x;
while(y!= -1)
y = father[y];
return y;
}
//两个集合的合并算法
void Union(int x, int y)
{
int GrandX = Find_set(x);
int GrandY = Find_set(y);
if(GrandX == GrandY)
return;
if(R[GrandX] < R[GrandY])
father[GrandX] = GrandY;
else
{
if(R[GrandX] == R[GrandY])
R[GrandX]++;
father[GrandY] = GrandX;
}
}