2.机器学习之单变量线性回归(李宏毅)

2.单变量线性回归(Linear Regression with One Variable)
2.1 模型表示(Model Represention)
以前面说的例子,房子的价格是个回归问题。回归一词指的是,我们根据之前的数据预测出一个准确的输出值,这个之前的数据被称为训练集。
这个问题的标记如下:
𝑚 代表训练集中实例的数量
𝑥 代表特征/输入变量
𝑦 代表目标变量/输出变量
(𝑥, 𝑦) 代表训练集中的实例
(𝑥(𝑖), 𝑦(𝑖)) 代表第𝑖 个观察实例
ℎ 代表学习算法的解决方案或函数也称为假设( hypothesis)
监督学习的工作方式
ℎ 代表 hypothesis(假设), ℎ表示一个函数,输入是房屋尺寸大小,就像你朋友想出售
的房屋,因此 ℎ 根据输入的 𝑥值来得出 𝑦 值, 𝑦 值对应房子的价格,因此, ℎ 是一个从𝑥
到 𝑦 的函数映射。要解决房价预测问题,我们实际上是要将训练集“喂”给我们的学习算法, 进而学习得到一个假设ℎ,然后将我们要预测的房屋的尺寸作为输入变量输入给ℎ,预测出该房屋的交易价格作为输出变量输出为结果。那么,对于我们的房价预测问题,我们该如何表达 ℎ?
一种可能的表达方式为: ℎ𝜃(𝑥) = 𝜃0 + 𝜃1𝑥,因为只含有一个特征/输入变量,因此这样
的问题叫作单变量线性回归问题。
2.2 代价函数(Cost Function)
模型选择了,那怎么选择合适的参数呢?我们选择的参数决定了我们得到的直线相对于我们的训练集的准确程度,模型所预测的值与训练集中实际值之间的差距(下图中蓝线所指)就是建模误差( modeling error)。
建模误差
我们的目标便是选择出可以使得建模误差的平方和能够最小的模型参数。 即使得代价
函数 在这里插入图片描述
最小。
我们绘制一个等高线图,三个坐标分别为𝜃0和𝜃1 和𝐽(𝜃0, 𝜃1):
在这里插入图片描述
则可以看出在三维空间中存在一个使得𝐽(𝜃0, 𝜃1)最小的点。我们要做的就是尽可能找到这个点或者最接近这个点的𝜃0和𝜃1。
2.3 代价函数的直观理解
代价函数代价函数的例子
我们已经知道了代价函数所表达的值是怎么样的,他们对应的假设是怎么样的,以及什么样的点更接近于代价函数J的最小值。
当然,我们真正需要的是一种有效的算法,能够自动找出这些使代价函数J取最小值的参数来。那么有什么方法能自动找出呢?
2.4 梯度下降(Gradient Descent)
梯度下降是一个用来求函数最小值的算法,我们将使用梯度下降算法来求出代价函数𝐽(𝜃0, 𝜃1) 的最小值。
梯度下降背后的思想是:开始时我们随机选择一个参数的组合(𝜃0, 𝜃1, . . . . . . , 𝜃𝑛),计算代价函数,然后我们寻找下一个能让代价函数值下降最多的参数组合。我们持续这么做直到找到一个局部最小值( local minimum),因为我们并没有尝试完所有的参数组合,所以不能确定我们得到的局部最小值是否便是全局最小值( global minimum),选择不同的初始参数组合,可能会找到不同的局部最小值。
在这里插入图片描述
想象一下你正站立在山的这一点上,站立在你想象的公园这座红色山上,在梯度下降算法中,我们要做的就是旋转 360 度,看看我们的周围,并问自己要在某个方向上,用小碎步尽快下山。这些小碎步需要朝什么方向?如果我们站在山坡上的这一点,你看一下周围,你会发现最佳的下山方向,你再看看周围,然后再一次想想,我应该从什么方向迈着小碎步下山?然后你按照自己的判断又迈出一步,重复上面的步骤,从这个新的点,你环顾四周,并决定从什么方向将会最快下山,然后又迈进了一小步,并依此类推,直到你接近局部最低点的位置。
批量梯度下降( batch gradient descent)算法的公式为:
在这里插入图片描述
其中𝑎是学习率( learning rate),它决定了我们沿着能让代价函数下降程度最大的方向向下迈出的步子有多大,在批量梯度下降中,我们每一次都同时让所有的参数减去学习速率乘以代价函数的导数。 梯度下降的更新方法
我们来看看如果𝑎太小或𝑎太大会出现什么情况:
如果𝑎太小了,即我的学习速率太小,结果就是只能这样像小宝宝一样一点点地挪动,去努力接近最低点,这样就需要很多步才能到达最低点;如果𝑎太大,那么梯度下降法可能会越过最低点,甚至可能无法收敛,下一次迭代又移动了一大步,越过一次,又越过一次,一次次越过最低点,直到你发现实际上离最低点越来越远,所以,如果𝑎太大,它会导致无法收敛,甚至发散。
如果我们预先把𝜃1放在一个局部的最低点,你认为下一步梯度下降法会怎样工作?假设你将𝜃1初始化在局部最低点,在这儿,它已经在一个局部的最优处或局部最低点。结果是局部最优点的导数将等于零,因为它是那条切线的斜率。这意味着你已经在局部最优点,它使得𝜃1不再改变,也就是新的𝜃1等于原来的𝜃1,因此,如果你的参数已经处于局部最低点,那么梯度下降法更新其实什么都没做,它不会改变参数的值。这也解释了为什么即使学习速率𝑎保持不变时,梯度下降也可以收敛到局部最低点。
2.5 梯度下降的线性回归(Gradient Descent For Linear Regression)
了解了梯度下降后,我们将其和代价函数结合,并将其应用于具体的拟合直线的线性回归算法里。
梯度下降算法和线性回归算法比较如图:
在这里插入图片描述
对我们之前的线性回归问题运用梯度下降法,关键在于求出代价函数的导数,即:在这里插入图片描述
我们刚刚使用的算法,有时也称为批量梯度下降。指的是在梯度下降的每一步中, 我们都用到了所有的训练样本,在梯度下降中,在计算微分求导项时,我们需要进行求和运算,所以,在每一个单独的梯度下降中,我们最终都要计算这样一个东西,这个项需要对所有𝑚个训练样本求和。因此,批量梯度下降法这个名字说明了我们需要考虑所有这一"批"训练样本,而事实上,有时也有其他类型的梯度下降法,不是这种"批量"型的,不考虑整个的训练集,而是每次只关注训练集中的一些小的子集。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值