首先,我们来看一道判断题:
如果A矩阵是非奇异方阵,则B/A等效于inv(A) * B。请问这句话正确还是错误?
答案放在文章最后。
有人问inv(A) 是什么?
inv为inverse的缩写,有着翻转,倒转的意思。在矩阵中表示逆
所以若A矩阵为非奇异方阵,则存在逆矩阵,可利用inv求逆:inv(A)
我们先从符号上区分右除 / 和左除 \,把 / 和 \ 看成一根木棍,木棍向右倒 / 称为右除,木棍向左倒 \ 称为左除。
假设A矩阵是非奇异方阵
那么假设有线性方程 AX=B,为了求该方程的解,我们将方程两边都左乘A矩阵的逆得到 X = inv(A) * B。在Matlab中可以用 A\B 代替 inv(A) * B ,即A\B=inv(A)*B。
同理假设有线性方程 XA=B,为了求该方程的解,我们将方程两边都右乘A矩阵的逆得到 X = B * inv(A)。在Matlab中可以用 B/A 代替 B * inv(A) ,即B/A=B*inv(A)。
所以很明显文章开头的那句话是错误的。
正确答案为 B/A等效于B * inv(A)