给你一个整数数组 nums ,判断是否存在三元组 [nums[i], nums[j], nums[k]] 满足 i != j、i != k 且 j != k ,同时还满足 nums[i] + nums[j] + nums[k] == 0 。
你返回所有和为 0 且不重复的三元组。
注意:答案中不可以包含重复的三元组。
示例 1:
输入:nums = [-1,0,1,2,-1,-4]
输出:[[-1,-1,2],[-1,0,1]]
解释:
nums[0] + nums[1] + nums[2] = (-1) + 0 + 1 = 0 。
nums[1] + nums[2] + nums[4] = 0 + 1 + (-1) = 0 。
nums[0] + nums[3] + nums[4] = (-1) + 2 + (-1) = 0 。
不同的三元组是 [-1,0,1] 和 [-1,-1,2] 。
注意,输出的顺序和三元组的顺序并不重要。
示例 2:
输入:nums = [0,1,1]
输出:[]
解释:唯一可能的三元组和不为 0 。
示例 3:
输入:nums = [0,0,0]
输出:[[0,0,0]]
解释:唯一可能的三元组和为 0 。
解题思路:参照之前两数之和的双指针解题思想,可以先用一个指针固定三数中最小(大)的一个,然后令target=0-固定的数,然后去找剩下两数之和为target的。若两指针指向的和小于target,则左指针右移,两数和将变大,同理,若大于target,则右指针左移,两数和将变小。
去重方法参考题解,直接对数组排序。
vector<vector<int>> threeSum(vector<int>& nums) {
sort(nums.begin(),nums.end());
int n=nums.size();
vector<vector<int>> array;
for(int i=0;i<n;i++){
if(nums[i]>0)
break;
if(i>0&&nums[i]==nums[i-1])
continue;
int l=i+1,r=n-1,target=0-nums[i];
while(l<r){
int sum=nums[l]+nums[r];
if(sum==target){
array.push_back({nums[i],nums[l],nums[r]});
while(l<r&&nums[l]==nums[++l]);
while(l<r&&nums[r]==nums[--r]);
continue;
}
else if(sum>target)
while(l<r&&nums[r]==nums[--r]);
else
while(l<r&&nums[l]==nums[++l]);
}
}
return array;
}